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1. INTRODUCTION 
The thermal energy constantly released by the human body corresponds on average to that of a 
100-wa[ light bulb. "Every day, an adult release an average of three kilowa[ hours of energy, an 
amount that could run an LCD TV for 30 hours." Much of this energy is lost in the environment 
and it is precisely this "waste" that we want to regulate by star^ng up the hea^ng. 

Due to technologies, family life in the living room has changed sharply. Television, home theaters, 
laptops, autonomous vacuum cleaners, etc. All this set of electronic devices coexist in harmony 
with the space shared by rela^ves in the living room on a day-to-day basis. Now, all these devices, 
as men^oned above, produce heat. If there are too many people in the room and there are too 
many devices connected, the heat produced can become too high. At this point, some^mes the 
hea^ng does not need to work at its highest performance, therefore, our goal is to study how 
the hea^ng should change depending on the members present in the room, as well as the 
connected electronic devices. 

2. DATA COLLECTION 
As we are focused on the study of hea^ng, we collect data for a week during winter season. The 
two data obtained are: electricity consump^on (for electronic devices) and CO2 sensor. However, 
to be more specific with temperature regula^on, we can think of more parameters: 

1. Window sensors: if the windows are opened the temperature will drop. 
2. Temperature/humidisty sensor: essen^al to know the temperature regardless of the rest 

of the parameters. 
3. Sound level sensor: generally, if there is a lot of noise it is due to the television to family 

conversa^ons. 
4. Heater produc^on sensors: to know how much energy is being produced. 

 

              Temperature    CO2 

 

   Sound Level                  Hea^ng 
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 TV consump^on (electricity)   Humidity 

We have a Boolean variable (hea^ng), and the rest are float. We will be interested in es^ma^ng, 
therefore, the float variables. We are going to plot each float with the heat in order to see if it 
exists a correla^on between them. 

CO2 (red) vs Heat (blue) 

 

Sound (red) vs Heat (blue) 

 

 

 

 

 

 

 



Smart House  HERNÁNDEZ Javier, VICENTE Alfonso 
 

 4 

Temperature (red) vs Heat (blue) 

 

Electricity (red) vs Heat (blue) 

 

Humidity (red) vs Heat (blue) 

 

None of the floats maintains a correla^on with heat, therefore, we will limit ourselves to 
es^ma^ng the values of the float variables. 
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3. MODEL IMPLEMENTATION 
Within the floats there are two discrete variables (CO2 and sound level) and the other three are 
con^nuous (temperature, electricity and humidity), therefore, the same algorithm cannot be 
used to es^mate all the variables. 

For con^nuous variables, a Decision Tree (DT) will be used or, if the results are not as expected, 
a Random Forest (RF) could be used. 

The main advantage of the decision tree classifier is its ability to using different feature subsets 
and decision rules at different stages of classifica^on. A general DT consists of one root node, a 
number of internal and leaf nodes, and branches. 

Decision Tree Classifier is a simpler model which consists of one root node, several internal and 
leaf nodes, and branches. It can use different feature subsets and decision rules at different 
stages of classifica^on. Random Forest Classifier uses a combina^on of a specific numbers of DT. 
Considering the RF by default according to sklearn, the number of the trees we are using is 100, 
as such, DT would have less variance sample to sample but ul^mately will not be a strong 
predic^ve model comparing it to RF. 

There are some advantages to using DT instead of RF. DT is easier to interpret and faster than RF 
because it can perform well on large datasets, the internal workings are capable of being 
observed and thus make it possible to reproduce work and can handle both numerical and 
categorical data. On the contrary, it has some disadvantages comparing to RF. Building DTs 
require algorithms capable of determining an op^mal choice at each node and they are prone 
to overfijng, especially when a tree is par^cularly deep. 

For con^nuous variables, the Support Vector Machine (SVM) will be used. 

SVM is a supervised machine learning model that uses classifica^on algorithms for two-group 
classifica^on problems. It works by correla^ng data to a large feature space so that data points 
can be categorized, even if the data cannot be linearly separated otherwise. Thus, this model 
needs more data than RF to make a reliable es^ma^on. 
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4. RESULTS 
‘Actual’ represents the real variable of the model obtained directly from the data sheet. 
‘Es^mated’ represents the predicted variable of the model obtained using sklearn libraries. 

1. PREDICT CO2 

CO2 is a discrete variable, so we can use a Decision Tree or a Random Forest to es^mate it. 

 

The accuracy of the model is 0.75 
The main absolute error of the model is 0.7884615384615384 
The f-score of the model is 0.7147435897435896 
The recall score of the model is 0.75 

Looking at the graph above and the results of accuracy and f-score it is strange that they get such 
different results, because from the graph you could say that the accuracy is prac^cally 1. 
Therefore, we wanted to show the real values and es^mates: 

[(702.0, 702.0), (946.0, 946.0), (919.0, 919.0), (735.0, 737.0), (447.0, 447.0), (589.0, 589.0), 
(714.0, 714.0), (841.0, 841.0), (567.0, 567.0), (661.0, 661.0), (759.0, 759.0), (873.0, 873.0), 
(727.0, 726.0), (592.0, 590.0), (737.0, 737.0), (647.0, 647.0), (615.0, 615.0), (669.0, 669.0), 
(866.0, 873.0), (577.0, 577.0), (859.0, 850.0), (612.0, 612.0), (727.0, 726.0), (456.0, 456.0), 
(866.0, 873.0), (552.0, 552.0), (467.0, 466.0), (782.0, 782.0), (536.0, 533.0), (770.0, 770.0), 
(638.0, 638.0), (735.0, 737.0), (466.0, 466.0), (557.0, 554.0), (714.0, 714.0), (586.0, 586.0), 
(712.0, 712.0), (565.0, 565.0), (592.0, 590.0), (702.0, 702.0), (647.0, 647.0), (632.0, 632.0), 
(647.0, 647.0), (533.0, 533.0), (841.0, 841.0), (657.0, 657.0), (614.0, 614.0), (784.0, 784.0), 
(835.0, 835.0), (659.0, 659.0), (467.0, 466.0), (702.0, 702.0)] 

As can be seen now, of the 52 data that have been es^mated, 39 have been correct, which 
corresponds to 75% accuracy. The difference in values between the real and the es^mated is 
very small, which is why they are not seen in the graph. 

The results are the same whether Decision Tree or Random Forest is used. 

 



Smart House  HERNÁNDEZ Javier, VICENTE Alfonso 
 

 7 

2. PREDICT SOUND 

Sound is a discrete variable, so we can use a Decision Tree to es^mate it. 

 

The accuracy of the model is 0.8857142857142857 
The main absolute error of the model is 0.11428571428571428 
The f-score of the model is 0.8571428571428571 
The recall score of the model is 0.8857142857142857 

Here the accuracy results agree more with what is shown in the graph. 

 

3. PREDICT ELECTRICITY CONSUMPTION 

Electricity consump^on is a con^nuous variable. It is not possible to use DT in this case. We are 
going to use support vector machine method (SVM) to predict electricity consump^on. 

 [(0.0, 0.09985213783843605), 
 (64.3, 28.50895338230529), 
 (91.0, 55.094965313830784), 
 (0.0, 0.09985213783843605), 
 (0.0, 0.09985213783843605), 
 (62.5, 28.50895338230529), 
 (43.0, 28.50905440688939), 
 (0.0, 0.09985213783843605), 
 (93.5, 92.28548056995628), 
 (2.4, 2.4463831229914668), 
 (4.4, 4.362815342428991), 
 (8.0, 8.80369312351699), 
 (0.0, 0.09985213783843605), 
 (0.0, 0.09985213783843605)] 

The main absolute error of the model is 8.777069048273075 
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4. PREDICT INDOOR TEMPERATURE 

Temperature is a con^nuous variable. It is not possible to use DT in this case. We are going to 
use support vector machine method (SVM) to predict the indoor temperature. 

 [(21.61, 21.706210079209264), 
 (21.74, 21.787690805946806), 
 (21.7, 21.762493357763784), 
 (21.85, 21.857316237660804), 
 (21.8, 21.82562670720012), 
 (21.73, 21.781383142949004), 
 (21.56, 21.675265098696887), 
 (21.68, 21.7499315774515), 
 (21.68, 21.7499315774515), 
 (21.64, 21.724896806343917), 
 (21.71, 21.76878404441645), 
 (21.95, 21.920704765312447), 
 (21.73, 21.781383142949004), 
 (21.73, 21.781383142949004), 
 (21.8, 21.82562670720012), 
 (21.7, 21.762493357763784), 
 (21.78, 21.81296678836489), 
 (21.84, 21.850975303126596), 
 (21.76, 21.80032048320591), 
 (22.08, 22.00260159611127), 
 (21.73, 21.781383142949004)] 

The main absolute error of the model is 0.05346453057974357. It is so small because the 
differences between the actual and es^mated temperature are hundredths of a degree. 

 

5. PREDICT HUMIDITY 

Humidity is a con^nuous variable. It is not possible to use DT in this case. We are going to use 
support vector machine method (SVM) to predict the humidity. 

 [(47.15, 47.25127906841871), 
 (47.15, 47.25127906841871), 
 (47.41, 47.50365746182406), 
 (45.98, 45.93603248752759), 
 (47.24, 47.34188928434136), 
 (47.39, 47.48532911824882), 
 (45.62, 45.53617302863984), 
 (43.12, 43.273855328574754), 
 (48.15, 48.00482268980761), 
 (45.21, 45.10470390234627), 
 (44.24, 44.19110009690814), 
 (47.23, 47.33197810780237), 
 (47.58, 47.65087057063801), 
 (47.45, 47.539705231858015), 
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 (47.68, 47.72959077143271), 
 (46.94, 47.02917295198536), 
 (45.48, 45.385744970849125), 
 (45.31, 45.20737218808709), 
 (47.42, 47.512746344197964), 
 (45.65, 45.56880615817021), 
 (45.6, 45.514494238860905), 
 (47.35, 47.44808555522553)] 

The main absolute error of the model is 0.09228132280770945. It is so small because the 
differences between the actual and es^mated temperature are hundredths of a degree. 

 

5. CONCLUSION 
At first, it has not been possible to establish a correla^on between turning the boiler on and off 
(hea^ng) and the variables measured such as sound volume, electricity consump^on, humidity 
and interior temperature, therefore, it is not possible to es^mate with these variables whether 
or not the heat can be turned on. It is true that between these variables there is some 
correla^on, such as the electricity consump^on from a television and the volume of sound since 
the TV emits sound. 

On the other hand, predic^ng con^nuous variables is more difficult than predic^ng discrete 
variables, as can be seen in the previous sec^on. Although the absolute error is less when 
predic^ng the con^nuous ones, if we had to calculate the accuracy (which is possible for 
con^nuous variables but is not very adequate) we would see that it would be prac^cally 0 
because no exact value matches.  
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6. ANNEXES CODE PYTHON 
# 1. Read the data from the csv files 

import pandas as pd # import pandas library 
 
CO2Data = pd.read_csv("CO2/datadoubleremoved.csv", sep=",") # read csv 
file 
timeCO2 = CO2Data["time"] # get time column 
CO2 = CO2Data["value"] # get CO2 column 
CO2_max = CO2.max() # get max value of label column 
CO2_min = CO2.min() # get min value of label column 
print(f"The levels of CO2 we have in our data are from {CO2_min} to 
{CO2_max}") 
 
HeatData = pd.read_csv("Heat/datadoubleremoved.csv", sep=",") # read csv 
file 
timeHeat = HeatData["time"] # get time column 
Heat = HeatData["value"] # get heat column 
Heat_max = Heat.max() # get max value of label column 
Heat_min = Heat.min() # get min value of label column 
print(f"The levels of heat consumption we have in our data are from 
{Heat_min} to {Heat_max}") 
 
ElecData = pd.read_csv("Electricity/datadoubleremoved.csv", sep=",") # 
read csv file 
timeElec = ElecData["time"] # get time column 
Elec = ElecData["value"] # get electricity column 
Elec_max = Elec.max() # get max value of label column 
Elec_min = Elec.min() # get min value of label column 
print(f"The levels of electric consumption we have in our data are from 
{Elec_min} to {Elec_max}") 
 
HumData = pd.read_csv("Humidity/datadoubleremoved.csv", sep=",") # read 
csv file 
timeHum = HumData["time"] # get time column 
Humidity = HumData["value"] # get Humidity column 
Humidity_max = Humidity.max() # get max value of label column 
Humidity_min = Humidity.min() # get min value of label column 
print(f"The levels of humidity we have in our data are from 
{Humidity_min} to {Humidity_max}") 
 
SoundData = pd.read_csv("Sound/datadoubleremoved.csv", sep=",") # read 
csv file 
timeSound = SoundData["time"] # get time column 
Sound = SoundData["value"] # get Sound column 
Sound_max = Sound.max() # get max value of label column 
Sound_min = Sound.min() # get min value of label column 
print(f"The levels of sound we have in our data are from {Sound_min} to 
{Sound_max}") 
 
TempData = pd.read_csv("Temperature/datadoubleremoved.csv", sep=",") # 
read csv file 
timeTemp = TempData["time"] # get time column 
Temp = TempData["value"] # get Temperature column 
Temp_max = Temp.max() # get max value of label column 
Temp_min = Temp.min() # get min value of label column 
print(f"The levels of temperature indoors we have in our data are from 
{Temp_min} to {Temp_max}") 
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# 2. Plot the different labels with the Heat 

import matplotlib.pyplot as plt # import matplotlib library 
 
# plot Temperature and Heat in the same plot with shared x axis of 
concatenation ordered timeElec and timeHeat 
# timeTemp and timeHeat are time dates as strs and they might be unordered 
# so we need to order them and concatenate them to plot them in the same 
plot 
# the format for x axis is: '2022-02-10 23:03:18+00:00' 
# we need to convert them to datetime objects to order them 
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis 
ax2 = ax1.twinx() # create second axis with shared x axis 
ax1.plot(pd.to_datetime(timeTemp), Temp, label="Temperature", 
color="red") # plot Temperature data 
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") # 
plot heat data 
ax1.set_xlabel("Time") # set x label 
ax1.set_ylabel("°C") # set y label 
ax2.set_ylabel("Heat consumption") # set y label 
ax1.legend(loc=2) 
ax2.legend(loc=1) 
plt.show() # show plot 
 
# plot Elec and Heat in the same plot with shared x axis of concatenation 
ordered timeElec and timeHeat 
# timeElec and timeHeat are time dates as strs and they might be unordered 
# so we need to order them and concatenate them to plot them in the same 
plot 
# the format for x axis is: '2022-02-10 23:03:18+00:00' 
# we need to convert them to datetime objects to order them 
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis 
ax2 = ax1.twinx() # create second axis with shared x axis 
ax1.plot(pd.to_datetime(timeElec), Elec, label="Electricity", 
color="red") # plot electricity data 
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") # 
plot heat data 
ax1.set_xlabel("Time") # set x label 
ax1.set_ylabel("Electricity consumption") # set y label 
ax2.set_ylabel("Heat consumption") # set y label 
ax1.legend(loc=2) 
ax2.legend(loc=1) 
plt.show() # show plot 
 
# plot humidity and Heat in the same plot with shared x axis of 
concatenation ordered timeElec and timeHeat 
# timeHum and timeHeat are time dates as strs and they might be unordered 
# so we need to order them and concatenate them to plot them in the same 
plot 
# the format for x axis is: '2022-02-10 23:03:18+00:00' 
# we need to convert them to datetime objects to order them 
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis 
ax2 = ax1.twinx() # create second axis with shared x axis 
ax1.plot(pd.to_datetime(timeHum), Humidity, label="Humidity", 
color="red") # plot Humidity data 
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") # 
plot heat data 
ax1.set_xlabel("Time") # set x label 
ax1.set_ylabel("%") # set y label 
ax2.set_ylabel("Heat consumption") # set y label 
ax1.legend(loc=2) 
ax2.legend(loc=1) 
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plt.show() # show plot 
 
# plot CO2 and Heat in the same plot with shared x axis of concatenation 
ordered timeElec and timeHeat 
# timeCO2 and timeHeat are time dates as strs and they might be unordered 
# so we need to order them and concatenate them to plot them in the same 
plot 
# the format for x axis is: '2022-02-10 23:03:18+00:00' 
# we need to convert them to datetime objects to order them 
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis 
ax2 = ax1.twinx() # create second axis with shared x axis 
ax1.plot(pd.to_datetime(timeCO2), CO2, label="CO2", color="red") # plot 
CO2 data 
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") # 
plot heat data 
ax1.set_xlabel("Time") # set x label 
ax1.set_ylabel("CO2") # set y label 
ax2.set_ylabel("Heat consumption") # set y label 
ax1.legend(loc=2) 
ax2.legend(loc=1) 
plt.show() # show plot 
 
# plot sound and Heat in the same plot with shared x axis of concatenation 
ordered timeElec and timeHeat 
# timeSound and timeHeat are time dates as strs and they might be 
unordered 
# so we need to order them and concatenate them to plot them in the same 
plot 
# the format for x axis is: '2022-02-10 23:03:18+00:00' 
# we need to convert them to datetime objects to order them 
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis 
ax2 = ax1.twinx() # create second axis with shared x axis 
ax1.plot(pd.to_datetime(timeSound), Sound, label="Sound", color="red") 
# plot Sound data 
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") # 
plot heat data 
ax1.set_xlabel("Time") # set x label 
ax1.set_ylabel("Sound dB") # set y label 
ax2.set_ylabel("Heat consumption") # set y label 
ax1.legend(loc=2) 
ax2.legend(loc=1) 
plt.show() # show plot 
 
 
# 3. Implement the Decision tree (DT) 

 
# Using scikit-learning library to train our model 
from re import X 
from sklearn.model_selection import train_test_split # import 
train_test_split library 
 
#split dataset in features and target variable 
feature_CO2 = CO2Data.columns[1:2] # CO2 column 
X = CO2Data[feature_CO2] # Feature = CO2 
y = CO2Data.value # Target variable = label 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=42) # split data into training and testing data (70% 
training and 30% testing) 
 
from sklearn import tree 



Smart House  HERNÁNDEZ Javier, VICENTE Alfonso 
 

 13 

from sklearn.tree import DecisionTreeClassifier # Import Decision Tree 
Classifier 
from sklearn.tree import export_graphviz 
 
classifier = tree.DecisionTreeClassifier(random_state=42, 
criterion="entropy", max_depth=None) # create decision tree classifier 
feature = x_train 
occupancy = y_train # set feature and occupancy 
classifier = classifier.fit(feature, occupancy) # fit the tree  
#print(f"With an occupancy equal to {occupancy}, the accuracy is", 
metrics.accuracy_score(y_train, y_test)) # print occupancy and accuracy 
print(occupancy) 
with open("tree.dot", 'w') as file: 
    f = tree.export_graphviz(classifier, out_file=file) # save the tree 
as dot file 
 
# calculate the number of nodes and maximum depth of the tree 
max_depth = classifier.tree_.max_depth 
print(f"The maximum depth of the tree is {max_depth}") 
 
from sklearn.model_selection import train_test_split 
from sklearn import tree 
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree 
Classifier 
from sklearn.tree import export_graphviz 
 
from sklearn import metrics 
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import f1_score 
from sklearn.metrics import recall_score 
 
# plot accuracy with the depth 
depth = [] # create an empty list for depth 
accuracy = [] # create an empty list for accuracy 
error_abs_iter = [] # create an empty list for error_abs_iter 
f1_score_iter = [] # create an empty list for f1_score_iter 
 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=42) # split data into training and testing 
 
for i in range(1, max_depth): 
    classifier = tree.DecisionTreeClassifier(random_state=0, 
criterion="entropy", max_depth=i) # create decision tree classifier 
    feature = x_train 
    occupancy = y_train # set feature and occupancy 
    classifier = classifier.fit(feature, occupancy) # fit the tree 
    predict = classifier.predict(x_test) # predict the occupancy 
    accuracy.append(metrics.accuracy_score(y_test, predict)) # 
calculate the accuracy 
    depth.append(i) # calculate the depth 
    error_abs_iter.append(mean_absolute_error(y_test, predict)) # 
calculate the main absolute error 
    f1_score_iter.append(f1_score(y_test, predict, average='weighted')) 
# calculate the f-score 
     
#plt.plot([i for i in range(1, max_depth)], accuracy) 
#plt.xlabel('Depth') 
#plt.ylabel('Accuracy') 
 
#plt.plot([i for i in range(1, max_depth)], error_abs_iter) 
#plt.xlabel('Depth') 
#plt.ylabel('Error') 
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plt.plot([i for i in range(1, max_depth)], f1_score_iter) 
plt.xlabel('Depth') 
plt.ylabel('F-score') 
 
 
## 4. Predict variables 

## PREDICT CO2 

CO2 is a discrete variable, so we can use a Decision Tree to es^mate it. 

 
import pandas as pd # import pandas library 
CO2Data = pd.read_csv("CO2/datadoubleremoved.csv", sep=",") # read csv 
file 
 
time = CO2Data["time"] # get time column 
CO2 = CO2Data["value"] # get CO2 column 
 
# Using scikit-learning library to train our model 
from sklearn.model_selection import train_test_split # import 
train_test_split library 
from sklearn import tree 
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree 
Classifier 
 
# split dataset in features and target variable 
feature_CO2 = CO2Data.columns[1:2] # CO2 column 
X = CO2Data[feature_CO2] # Features = CO2  
y = CO2Data.value # Target variable = label 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=0) # split data into training and testing 
classifier = tree.DecisionTreeClassifier(random_state=0, 
criterion="entropy", max_depth=7) # create decision tree classifier 
actual_CO2 = y_test 
classifier = classifier.fit(x_train, y_train) # fit the tree 
estimated_CO2 = classifier.predict(x_test) # predict the CO2 
 
from sklearn import metrics 
accuracy = metrics.accuracy_score(y_test, estimated_CO2) # calculate the 
accuracy 
print(f"The accuracy of the model is {accuracy}") # print the accuracy 
 
from sklearn.metrics import mean_absolute_error 
error_abs = mean_absolute_error(y_test, estimated_CO2) # calculate the 
main absolute error 
print(f"The main absolute error of the model is {error_abs}") # print 
the main absolute error 
 
from sklearn.metrics import f1_score 
f1_score = f1_score(y_test, estimated_CO2, average='weighted') # 
calculate the f-score 
print(f"The f-score of the model is {f1_score}") # print the f-score 
 
from sklearn.metrics import recall_score 
recall_score = recall_score(y_test, estimated_CO2, average='weighted') 
# calculate the recall score 
print(f"The recall score of the model is {recall_score}") # print the 
recall score 
 
# delete the first columne of the actual CO2 
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actual_CO2 = actual_CO2.reset_index(drop=True) 
 
# plot the actual CO2 and the estimated CO2 
plt.plot(actual_CO2, label = "Actual CO2") 
plt.plot(estimated_CO2, label = "Estimated CO2") 
plt.legend() 
#plt.xlabel('Time') 
plt.ylabel('ppm CO2') 
plt.title('Actual CO2 VS Estimated CO2') 
plt.show() 
 
[(i, j) for i,j in zip(y_test.to_list(), estimated_CO2)] # print the 
actual CO2 and the estimated CO2 
 
 
We can use a Random Forest Classifier to es^mate the CO2 too. 

import pandas as pd # import pandas library 
CO2Data = pd.read_csv("CO2/datadoubleremoved.csv", sep=",") # read csv 
file 
 
time = CO2Data["time"] # get time column 
CO2 = CO2Data["value"] # get CO2 column 
 
# Using scikit-learning library to train our model 
from sklearn.model_selection import train_test_split # import 
train_test_split library 
from sklearn import tree 
from sklearn.ensemble import RandomForestClassifier 
 
# split dataset in features and target variable 
feature_CO2 = CO2Data.columns[1:2] # CO2 column 
X = CO2Data[feature_CO2] # Features = CO2  
y = CO2Data.value # Target variable = label 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=0) # split data into training and testing 
classifier = RandomForestClassifier(criterion="entropy") 
actual_CO2 = y_test 
classifier = classifier.fit(x_train, y_train) # fit the tree 
estimated_CO2 = classifier.predict(x_test) # predict the CO2 
 
from sklearn import metrics 
accuracy = metrics.accuracy_score(y_test, estimated_CO2) # calculate the 
accuracy 
print(f"The accuracy of the model is {accuracy}") # print the accuracy 
 
from sklearn.metrics import mean_absolute_error 
error_abs = mean_absolute_error(y_test, estimated_CO2) # calculate the 
main absolute error 
print(f"The main absolute error of the model is {error_abs}") # print 
the main absolute error 
 
from sklearn.metrics import f1_score 
f1 = f1_score(y_test, estimated_CO2, average='weighted') # calculate the 
f-score 
print(f"The f-score of the model is {f1}") # print the f-score 
 
from sklearn.metrics import recall_score 
recall_score = recall_score(y_test, estimated_CO2, average='weighted') 
# calculate the recall score 
print(f"The recall score of the model is {recall_score}") # print the 
recall score 
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# delete the first columne of the actual CO2 
actual_CO2 = actual_CO2.reset_index(drop=True) 
 
# plot the actual CO2 and the estimated CO2 
plt.plot(actual_CO2, label = "Actual CO2") 
plt.plot(estimated_CO2, label = "Estimated CO2") 
plt.legend() 
plt.xlabel('Time') 
plt.ylabel('ppm CO2') 
plt.title('Actual CO2 VS Estimated CO2') 
plt.show() 
 
[(i, j) for i,j in zip(y_test.to_list(), estimated_CO2)] # print the 
actual CO2 and the estimated CO2 
 
 
## PREDICT SOUND 

Sound is a discrete variable, so we can use a Decision Tree to es^mate it. 

import pandas as pd # import pandas library 
SoundData = pd.read_csv("Sound/datadoubleremoved.csv", sep=",") # read 
csv file 
 
timeSound = SoundData["time"] # get time column 
Sound = SoundData["value"] # get Sound column 
 
# Using scikit-learning library to train our model 
from sklearn.model_selection import train_test_split # import 
train_test_split library 
from sklearn import tree 
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree 
Classifier 
 
# split dataset in features and target variable 
feature_Sound = SoundData.columns[1:2] # sound column 
X = SoundData[feature_Sound] # Features = sound  
y = SoundData.value # Target variable = label 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=0) # split data into training and testing 
classifier = tree.DecisionTreeClassifier(random_state=0, 
criterion="entropy", max_depth=7) # create decision tree classifier 
actual_Sound = y_test 
classifier = classifier.fit(x_train, y_train) # fit the tree 
estimated_Sound = classifier.predict(x_test) # predict the sound 
 
from sklearn import metrics 
accuracy = metrics.accuracy_score(y_test, estimated_Sound) # calculate 
the accuracy 
print(f"The accuracy of the model is {accuracy}") # print the accuracy 
 
from sklearn.metrics import mean_absolute_error 
error_abs = mean_absolute_error(y_test, estimated_Sound) # calculate the 
main absolute error 
print(f"The main absolute error of the model is {error_abs}") # print 
the main absolute error 
 
from sklearn.metrics import f1_score 
f1_score = f1_score(y_test, estimated_Sound, average='weighted') # 
calculate the f-score 
print(f"The f-score of the model is {f1_score}") # print the f-score 
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from sklearn.metrics import recall_score 
recall_score = recall_score(y_test, estimated_Sound, 
average='weighted') # calculate the recall score 
print(f"The recall score of the model is {recall_score}") # print the 
recall score 
 
# delete the first columne of the actual sound 
actual_Sound = actual_Sound.reset_index(drop=True) 
 
# plot the actual sound and the estimated sound 
plt.plot(actual_Sound, label = "Actual Sound") 
plt.plot(estimated_Sound, label = "Estimated Sound") 
plt.legend() 
plt.ylabel('dB') 
plt.title('Actual VS Estimated Sound') 
plt.show() 
 
[(i, j) for i,j in zip(y_test.to_list(), estimated_Sound)] # print the 
actual sound and the estimated sound 
 
 
## PREDICT ELECTRICITY CONSUMPTION 

Electricity consump^on is a con^nuous variable. It is not possible to use DT in this case. We are 
going to use support vector machine method (SVM) to predict electricity consump^on. 

import pandas as pd # import pandas library 
ElecData = pd.read_csv("Electricity/datadoubleremoved.csv", sep=",") # 
read csv file 
 
time = ElecData["time"] # get time column 
Elec = ElecData["value"] # get electricity column                         
 
#split dataset in features and target variable 
feature_Elec = ElecData.columns[1:2] # electricity column 
X = ElecData[feature_Elec] # Features = electricity 
y = ElecData.value # Target variable = label 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=0) # split data into training and testing 
 
# use svm regression to predict the electricity consumption 
from sklearn.svm import SVR 
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) # set the kernel to rbf 
and fit the model 
estimated_Elec = svr_rbf.fit(x_train, y_train).predict(x_test) # predict 
the electricity consumption 
 
from sklearn.metrics import mean_absolute_error 
error_abs = mean_absolute_error(y_test, estimated_Elec) # calculate the 
main absolute error 
print(f"The main absolute error of the model is {error_abs}") # print 
the main absolute error 
 
plt.plot(x_test["value"].to_list(), label = 'Actual', color='blue') 
plt.plot(estimated_Elec, label = 'Estimated', color='red') 
plt.ylabel('kW') 
plt.legend(loc='upper right') 
plt.title('Actual VS Estimated Electricity Consumption') 
plt.show() 
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[(i, j) for i,j in zip(y_test.to_list(), estimated_Elec)] # print the 
actual electricity consumption and the estimated one 
 
 
## PREDICT INDOOR TEMPERATURE 

Temperature is a con^nuous variable. It is not possible to use DT in this case. We are going to 
use support vector machine method (SVM) to predict the indoor temperature. 

 
import pandas as pd # import pandas library 
TempData = pd.read_csv("Temperature/datadoubleremoved.csv", sep=",") # 
read csv file 
 
time = TempData["time"] # get time column 
Temp = TempData["value"] # get temperature column                       
 
#split dataset in features and target variable 
feature_Temp = TempData.columns[1:2] # electricity column 
X = TempData[feature_Temp] # Features = electricity 
y = TempData.value # Target variable = label 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=0) # split data into training and testing 
 
# use svm regression to predict the temperature 
from sklearn.svm import SVR 
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) # set the kernel to rbf 
and fit the model 
estimated_Temp = svr_rbf.fit(x_train, y_train).predict(x_test) # predict 
the temperature 
 
from sklearn.metrics import mean_absolute_error 
error_abs = mean_absolute_error(y_test, estimated_Temp) # calculate the 
main absolute error 
print(f"The main absolute error of the model is {error_abs}") # print 
the main absolute error 
 
plt.plot(x_test["value"].to_list(), label = 'Actual Temperature', 
color='blue') 
plt.plot(estimated_Temp, label = 'Estimated', color='red') 
plt.ylabel('°C') 
plt.legend() 
plt.title('Actual VS Estimated Indoor Temperature') 
plt.show() 
 
[(i, j) for i,j in zip(y_test.to_list(), estimated_Temp)] # print the 
actual temperature and the estimated one 
 
 
## PREDICT HUMIDITY 

Humidity is a con^nuous variable. It is not possible to use DT in this case. We are going to use 
support vector machine method (SVM) to predict the humidity. 

 
import pandas as pd # import pandas library 
HumData = pd.read_csv("Humidity/datadoubleremoved.csv", sep=",") # read 
csv file 
 
time = HumData["time"] # get time column 
Hum = HumData["value"] # get humidity column                   
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#split dataset in features and target variable 
feature_Hum = HumData.columns[1:2] # humidity column 
X = HumData[feature_Hum] # Features = humidity 
y = HumData.value # Target variable = label 
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=0) # split data into training and testing 
 
# use svm regression to predict the temperature 
from sklearn.svm import SVR 
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) # set the kernel to rbf 
and fit the model 
estimated_Hum = svr_rbf.fit(x_train, y_train).predict(x_test) # predict 
the temperature 
 
from sklearn.metrics import mean_absolute_error 
error_abs = mean_absolute_error(y_test, estimated_Hum) # calculate the 
main absolute error 
print(f"The main absolute error of the model is {error_abs}") # print 
the main absolute error 
 
plt.plot(x_test["value"].to_list(), label = 'Actual Humidity', 
color='blue') 
plt.plot(estimated_Hum, label = 'Estimated', color='red') 
plt.ylabel('%') 
plt.legend(loc='lower right') 
plt.title('Actual VS Estimated Humidity') 
plt.show() 
 
[(i, j) for i,j in zip(y_test.to_list(), estimated_Hum)] # print the 
actual humidity and the estimated one 
 

 


