

HEATING SYSTEM START-UP
DEPENDING ON THE NUMBER

OF PEOPLE IN THE ROOM
AND THE CONNECTED
ELECTRONIC DEVICES

Smart House

HERNANDEZ OLIVAN, JAVIER
VICENTE ARAGUES, ALFONSO

ENSE 3 – SEM – SMART SYSTEMS

2022/2023

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 1

Table of contents

1. INTRODUCTION .. 2

2. DATA COLLECTION .. 2

3. MODEL IMPLEMENTATION ... 5

4. RESULTS .. 6

1. PREDICT CO2 .. 6

2. PREDICT SOUND ... 7

3. PREDICT ELECTRICITY CONSUMPTION ... 7

4. PREDICT INDOOR TEMPERATURE .. 8

5. PREDICT HUMIDITY .. 8

5. CONCLUSION .. 9

6. ANNEXES CODE PYTHON .. 10

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 2

1. INTRODUCTION
The thermal energy constantly released by the human body corresponds on average to that of a
100-wa[light bulb. "Every day, an adult release an average of three kilowa[hours of energy, an
amount that could run an LCD TV for 30 hours." Much of this energy is lost in the environment
and it is precisely this "waste" that we want to regulate by star^ng up the hea^ng.

Due to technologies, family life in the living room has changed sharply. Television, home theaters,
laptops, autonomous vacuum cleaners, etc. All this set of electronic devices coexist in harmony
with the space shared by rela^ves in the living room on a day-to-day basis. Now, all these devices,
as men^oned above, produce heat. If there are too many people in the room and there are too
many devices connected, the heat produced can become too high. At this point, some^mes the
hea^ng does not need to work at its highest performance, therefore, our goal is to study how
the hea^ng should change depending on the members present in the room, as well as the
connected electronic devices.

2. DATA COLLECTION
As we are focused on the study of hea^ng, we collect data for a week during winter season. The
two data obtained are: electricity consump^on (for electronic devices) and CO2 sensor. However,
to be more specific with temperature regula^on, we can think of more parameters:

1. Window sensors: if the windows are opened the temperature will drop.
2. Temperature/humidisty sensor: essen^al to know the temperature regardless of the rest

of the parameters.
3. Sound level sensor: generally, if there is a lot of noise it is due to the television to family

conversa^ons.
4. Heater produc^on sensors: to know how much energy is being produced.

 Temperature CO2

 Sound Level Hea^ng

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 3

 TV consump^on (electricity) Humidity

We have a Boolean variable (hea^ng), and the rest are float. We will be interested in es^ma^ng,
therefore, the float variables. We are going to plot each float with the heat in order to see if it
exists a correla^on between them.

CO2 (red) vs Heat (blue)

Sound (red) vs Heat (blue)

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 4

Temperature (red) vs Heat (blue)

Electricity (red) vs Heat (blue)

Humidity (red) vs Heat (blue)

None of the floats maintains a correla^on with heat, therefore, we will limit ourselves to
es^ma^ng the values of the float variables.

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 5

3. MODEL IMPLEMENTATION
Within the floats there are two discrete variables (CO2 and sound level) and the other three are
con^nuous (temperature, electricity and humidity), therefore, the same algorithm cannot be
used to es^mate all the variables.

For con^nuous variables, a Decision Tree (DT) will be used or, if the results are not as expected,
a Random Forest (RF) could be used.

The main advantage of the decision tree classifier is its ability to using different feature subsets
and decision rules at different stages of classifica^on. A general DT consists of one root node, a
number of internal and leaf nodes, and branches.

Decision Tree Classifier is a simpler model which consists of one root node, several internal and
leaf nodes, and branches. It can use different feature subsets and decision rules at different
stages of classifica^on. Random Forest Classifier uses a combina^on of a specific numbers of DT.
Considering the RF by default according to sklearn, the number of the trees we are using is 100,
as such, DT would have less variance sample to sample but ul^mately will not be a strong
predic^ve model comparing it to RF.

There are some advantages to using DT instead of RF. DT is easier to interpret and faster than RF
because it can perform well on large datasets, the internal workings are capable of being
observed and thus make it possible to reproduce work and can handle both numerical and
categorical data. On the contrary, it has some disadvantages comparing to RF. Building DTs
require algorithms capable of determining an op^mal choice at each node and they are prone
to overfijng, especially when a tree is par^cularly deep.

For con^nuous variables, the Support Vector Machine (SVM) will be used.

SVM is a supervised machine learning model that uses classifica^on algorithms for two-group
classifica^on problems. It works by correla^ng data to a large feature space so that data points
can be categorized, even if the data cannot be linearly separated otherwise. Thus, this model
needs more data than RF to make a reliable es^ma^on.

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 6

4. RESULTS
‘Actual’ represents the real variable of the model obtained directly from the data sheet.
‘Es^mated’ represents the predicted variable of the model obtained using sklearn libraries.

1. PREDICT CO2

CO2 is a discrete variable, so we can use a Decision Tree or a Random Forest to es^mate it.

The accuracy of the model is 0.75
The main absolute error of the model is 0.7884615384615384
The f-score of the model is 0.7147435897435896
The recall score of the model is 0.75

Looking at the graph above and the results of accuracy and f-score it is strange that they get such
different results, because from the graph you could say that the accuracy is prac^cally 1.
Therefore, we wanted to show the real values and es^mates:

[(702.0, 702.0), (946.0, 946.0), (919.0, 919.0), (735.0, 737.0), (447.0, 447.0), (589.0, 589.0),
(714.0, 714.0), (841.0, 841.0), (567.0, 567.0), (661.0, 661.0), (759.0, 759.0), (873.0, 873.0),
(727.0, 726.0), (592.0, 590.0), (737.0, 737.0), (647.0, 647.0), (615.0, 615.0), (669.0, 669.0),
(866.0, 873.0), (577.0, 577.0), (859.0, 850.0), (612.0, 612.0), (727.0, 726.0), (456.0, 456.0),
(866.0, 873.0), (552.0, 552.0), (467.0, 466.0), (782.0, 782.0), (536.0, 533.0), (770.0, 770.0),
(638.0, 638.0), (735.0, 737.0), (466.0, 466.0), (557.0, 554.0), (714.0, 714.0), (586.0, 586.0),
(712.0, 712.0), (565.0, 565.0), (592.0, 590.0), (702.0, 702.0), (647.0, 647.0), (632.0, 632.0),
(647.0, 647.0), (533.0, 533.0), (841.0, 841.0), (657.0, 657.0), (614.0, 614.0), (784.0, 784.0),
(835.0, 835.0), (659.0, 659.0), (467.0, 466.0), (702.0, 702.0)]

As can be seen now, of the 52 data that have been es^mated, 39 have been correct, which
corresponds to 75% accuracy. The difference in values between the real and the es^mated is
very small, which is why they are not seen in the graph.

The results are the same whether Decision Tree or Random Forest is used.

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 7

2. PREDICT SOUND

Sound is a discrete variable, so we can use a Decision Tree to es^mate it.

The accuracy of the model is 0.8857142857142857
The main absolute error of the model is 0.11428571428571428
The f-score of the model is 0.8571428571428571
The recall score of the model is 0.8857142857142857

Here the accuracy results agree more with what is shown in the graph.

3. PREDICT ELECTRICITY CONSUMPTION

Electricity consump^on is a con^nuous variable. It is not possible to use DT in this case. We are
going to use support vector machine method (SVM) to predict electricity consump^on.

 [(0.0, 0.09985213783843605),
 (64.3, 28.50895338230529),
 (91.0, 55.094965313830784),
 (0.0, 0.09985213783843605),
 (0.0, 0.09985213783843605),
 (62.5, 28.50895338230529),
 (43.0, 28.50905440688939),
 (0.0, 0.09985213783843605),
 (93.5, 92.28548056995628),
 (2.4, 2.4463831229914668),
 (4.4, 4.362815342428991),
 (8.0, 8.80369312351699),
 (0.0, 0.09985213783843605),
 (0.0, 0.09985213783843605)]

The main absolute error of the model is 8.777069048273075

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 8

4. PREDICT INDOOR TEMPERATURE

Temperature is a con^nuous variable. It is not possible to use DT in this case. We are going to
use support vector machine method (SVM) to predict the indoor temperature.

 [(21.61, 21.706210079209264),
 (21.74, 21.787690805946806),
 (21.7, 21.762493357763784),
 (21.85, 21.857316237660804),
 (21.8, 21.82562670720012),
 (21.73, 21.781383142949004),
 (21.56, 21.675265098696887),
 (21.68, 21.7499315774515),
 (21.68, 21.7499315774515),
 (21.64, 21.724896806343917),
 (21.71, 21.76878404441645),
 (21.95, 21.920704765312447),
 (21.73, 21.781383142949004),
 (21.73, 21.781383142949004),
 (21.8, 21.82562670720012),
 (21.7, 21.762493357763784),
 (21.78, 21.81296678836489),
 (21.84, 21.850975303126596),
 (21.76, 21.80032048320591),
 (22.08, 22.00260159611127),
 (21.73, 21.781383142949004)]

The main absolute error of the model is 0.05346453057974357. It is so small because the
differences between the actual and es^mated temperature are hundredths of a degree.

5. PREDICT HUMIDITY

Humidity is a con^nuous variable. It is not possible to use DT in this case. We are going to use
support vector machine method (SVM) to predict the humidity.

 [(47.15, 47.25127906841871),
 (47.15, 47.25127906841871),
 (47.41, 47.50365746182406),
 (45.98, 45.93603248752759),
 (47.24, 47.34188928434136),
 (47.39, 47.48532911824882),
 (45.62, 45.53617302863984),
 (43.12, 43.273855328574754),
 (48.15, 48.00482268980761),
 (45.21, 45.10470390234627),
 (44.24, 44.19110009690814),
 (47.23, 47.33197810780237),
 (47.58, 47.65087057063801),
 (47.45, 47.539705231858015),

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 9

 (47.68, 47.72959077143271),
 (46.94, 47.02917295198536),
 (45.48, 45.385744970849125),
 (45.31, 45.20737218808709),
 (47.42, 47.512746344197964),
 (45.65, 45.56880615817021),
 (45.6, 45.514494238860905),
 (47.35, 47.44808555522553)]

The main absolute error of the model is 0.09228132280770945. It is so small because the
differences between the actual and es^mated temperature are hundredths of a degree.

5. CONCLUSION
At first, it has not been possible to establish a correla^on between turning the boiler on and off
(hea^ng) and the variables measured such as sound volume, electricity consump^on, humidity
and interior temperature, therefore, it is not possible to es^mate with these variables whether
or not the heat can be turned on. It is true that between these variables there is some
correla^on, such as the electricity consump^on from a television and the volume of sound since
the TV emits sound.

On the other hand, predic^ng con^nuous variables is more difficult than predic^ng discrete
variables, as can be seen in the previous sec^on. Although the absolute error is less when
predic^ng the con^nuous ones, if we had to calculate the accuracy (which is possible for
con^nuous variables but is not very adequate) we would see that it would be prac^cally 0
because no exact value matches.

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 10

6. ANNEXES CODE PYTHON
1. Read the data from the csv files

import pandas as pd # import pandas library

CO2Data = pd.read_csv("CO2/datadoubleremoved.csv", sep=",") # read csv
file
timeCO2 = CO2Data["time"] # get time column
CO2 = CO2Data["value"] # get CO2 column
CO2_max = CO2.max() # get max value of label column
CO2_min = CO2.min() # get min value of label column
print(f"The levels of CO2 we have in our data are from {CO2_min} to
{CO2_max}")

HeatData = pd.read_csv("Heat/datadoubleremoved.csv", sep=",") # read csv
file
timeHeat = HeatData["time"] # get time column
Heat = HeatData["value"] # get heat column
Heat_max = Heat.max() # get max value of label column
Heat_min = Heat.min() # get min value of label column
print(f"The levels of heat consumption we have in our data are from
{Heat_min} to {Heat_max}")

ElecData = pd.read_csv("Electricity/datadoubleremoved.csv", sep=",") #
read csv file
timeElec = ElecData["time"] # get time column
Elec = ElecData["value"] # get electricity column
Elec_max = Elec.max() # get max value of label column
Elec_min = Elec.min() # get min value of label column
print(f"The levels of electric consumption we have in our data are from
{Elec_min} to {Elec_max}")

HumData = pd.read_csv("Humidity/datadoubleremoved.csv", sep=",") # read
csv file
timeHum = HumData["time"] # get time column
Humidity = HumData["value"] # get Humidity column
Humidity_max = Humidity.max() # get max value of label column
Humidity_min = Humidity.min() # get min value of label column
print(f"The levels of humidity we have in our data are from
{Humidity_min} to {Humidity_max}")

SoundData = pd.read_csv("Sound/datadoubleremoved.csv", sep=",") # read
csv file
timeSound = SoundData["time"] # get time column
Sound = SoundData["value"] # get Sound column
Sound_max = Sound.max() # get max value of label column
Sound_min = Sound.min() # get min value of label column
print(f"The levels of sound we have in our data are from {Sound_min} to
{Sound_max}")

TempData = pd.read_csv("Temperature/datadoubleremoved.csv", sep=",") #
read csv file
timeTemp = TempData["time"] # get time column
Temp = TempData["value"] # get Temperature column
Temp_max = Temp.max() # get max value of label column
Temp_min = Temp.min() # get min value of label column
print(f"The levels of temperature indoors we have in our data are from
{Temp_min} to {Temp_max}")

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 11

2. Plot the different labels with the Heat

import matplotlib.pyplot as plt # import matplotlib library

plot Temperature and Heat in the same plot with shared x axis of
concatenation ordered timeElec and timeHeat
timeTemp and timeHeat are time dates as strs and they might be unordered
so we need to order them and concatenate them to plot them in the same
plot
the format for x axis is: '2022-02-10 23:03:18+00:00'
we need to convert them to datetime objects to order them
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis
ax2 = ax1.twinx() # create second axis with shared x axis
ax1.plot(pd.to_datetime(timeTemp), Temp, label="Temperature",
color="red") # plot Temperature data
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") #
plot heat data
ax1.set_xlabel("Time") # set x label
ax1.set_ylabel("°C") # set y label
ax2.set_ylabel("Heat consumption") # set y label
ax1.legend(loc=2)
ax2.legend(loc=1)
plt.show() # show plot

plot Elec and Heat in the same plot with shared x axis of concatenation
ordered timeElec and timeHeat
timeElec and timeHeat are time dates as strs and they might be unordered
so we need to order them and concatenate them to plot them in the same
plot
the format for x axis is: '2022-02-10 23:03:18+00:00'
we need to convert them to datetime objects to order them
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis
ax2 = ax1.twinx() # create second axis with shared x axis
ax1.plot(pd.to_datetime(timeElec), Elec, label="Electricity",
color="red") # plot electricity data
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") #
plot heat data
ax1.set_xlabel("Time") # set x label
ax1.set_ylabel("Electricity consumption") # set y label
ax2.set_ylabel("Heat consumption") # set y label
ax1.legend(loc=2)
ax2.legend(loc=1)
plt.show() # show plot

plot humidity and Heat in the same plot with shared x axis of
concatenation ordered timeElec and timeHeat
timeHum and timeHeat are time dates as strs and they might be unordered
so we need to order them and concatenate them to plot them in the same
plot
the format for x axis is: '2022-02-10 23:03:18+00:00'
we need to convert them to datetime objects to order them
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis
ax2 = ax1.twinx() # create second axis with shared x axis
ax1.plot(pd.to_datetime(timeHum), Humidity, label="Humidity",
color="red") # plot Humidity data
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") #
plot heat data
ax1.set_xlabel("Time") # set x label
ax1.set_ylabel("%") # set y label
ax2.set_ylabel("Heat consumption") # set y label
ax1.legend(loc=2)
ax2.legend(loc=1)

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 12

plt.show() # show plot

plot CO2 and Heat in the same plot with shared x axis of concatenation
ordered timeElec and timeHeat
timeCO2 and timeHeat are time dates as strs and they might be unordered
so we need to order them and concatenate them to plot them in the same
plot
the format for x axis is: '2022-02-10 23:03:18+00:00'
we need to convert them to datetime objects to order them
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis
ax2 = ax1.twinx() # create second axis with shared x axis
ax1.plot(pd.to_datetime(timeCO2), CO2, label="CO2", color="red") # plot
CO2 data
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") #
plot heat data
ax1.set_xlabel("Time") # set x label
ax1.set_ylabel("CO2") # set y label
ax2.set_ylabel("Heat consumption") # set y label
ax1.legend(loc=2)
ax2.legend(loc=1)
plt.show() # show plot

plot sound and Heat in the same plot with shared x axis of concatenation
ordered timeElec and timeHeat
timeSound and timeHeat are time dates as strs and they might be
unordered
so we need to order them and concatenate them to plot them in the same
plot
the format for x axis is: '2022-02-10 23:03:18+00:00'
we need to convert them to datetime objects to order them
fig, ax1 = plt.subplots(figsize=(30,10)) # create figure and first axis
ax2 = ax1.twinx() # create second axis with shared x axis
ax1.plot(pd.to_datetime(timeSound), Sound, label="Sound", color="red")
plot Sound data
ax2.plot(pd.to_datetime(timeHeat), Heat, label="Heat", color="blue") #
plot heat data
ax1.set_xlabel("Time") # set x label
ax1.set_ylabel("Sound dB") # set y label
ax2.set_ylabel("Heat consumption") # set y label
ax1.legend(loc=2)
ax2.legend(loc=1)
plt.show() # show plot

3. Implement the Decision tree (DT)

Using scikit-learning library to train our model
from re import X
from sklearn.model_selection import train_test_split # import
train_test_split library

#split dataset in features and target variable
feature_CO2 = CO2Data.columns[1:2] # CO2 column
X = CO2Data[feature_CO2] # Feature = CO2
y = CO2Data.value # Target variable = label
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42) # split data into training and testing data (70%
training and 30% testing)

from sklearn import tree

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 13

from sklearn.tree import DecisionTreeClassifier # Import Decision Tree
Classifier
from sklearn.tree import export_graphviz

classifier = tree.DecisionTreeClassifier(random_state=42,
criterion="entropy", max_depth=None) # create decision tree classifier
feature = x_train
occupancy = y_train # set feature and occupancy
classifier = classifier.fit(feature, occupancy) # fit the tree
#print(f"With an occupancy equal to {occupancy}, the accuracy is",
metrics.accuracy_score(y_train, y_test)) # print occupancy and accuracy
print(occupancy)
with open("tree.dot", 'w') as file:
 f = tree.export_graphviz(classifier, out_file=file) # save the tree
as dot file

calculate the number of nodes and maximum depth of the tree
max_depth = classifier.tree_.max_depth
print(f"The maximum depth of the tree is {max_depth}")

from sklearn.model_selection import train_test_split
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree
Classifier
from sklearn.tree import export_graphviz

from sklearn import metrics
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score

plot accuracy with the depth
depth = [] # create an empty list for depth
accuracy = [] # create an empty list for accuracy
error_abs_iter = [] # create an empty list for error_abs_iter
f1_score_iter = [] # create an empty list for f1_score_iter

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42) # split data into training and testing

for i in range(1, max_depth):
 classifier = tree.DecisionTreeClassifier(random_state=0,
criterion="entropy", max_depth=i) # create decision tree classifier
 feature = x_train
 occupancy = y_train # set feature and occupancy
 classifier = classifier.fit(feature, occupancy) # fit the tree
 predict = classifier.predict(x_test) # predict the occupancy
 accuracy.append(metrics.accuracy_score(y_test, predict)) #
calculate the accuracy
 depth.append(i) # calculate the depth
 error_abs_iter.append(mean_absolute_error(y_test, predict)) #
calculate the main absolute error
 f1_score_iter.append(f1_score(y_test, predict, average='weighted'))
calculate the f-score

#plt.plot([i for i in range(1, max_depth)], accuracy)
#plt.xlabel('Depth')
#plt.ylabel('Accuracy')

#plt.plot([i for i in range(1, max_depth)], error_abs_iter)
#plt.xlabel('Depth')
#plt.ylabel('Error')

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 14

plt.plot([i for i in range(1, max_depth)], f1_score_iter)
plt.xlabel('Depth')
plt.ylabel('F-score')

4. Predict variables

PREDICT CO2

CO2 is a discrete variable, so we can use a Decision Tree to es^mate it.

import pandas as pd # import pandas library
CO2Data = pd.read_csv("CO2/datadoubleremoved.csv", sep=",") # read csv
file

time = CO2Data["time"] # get time column
CO2 = CO2Data["value"] # get CO2 column

Using scikit-learning library to train our model
from sklearn.model_selection import train_test_split # import
train_test_split library
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree
Classifier

split dataset in features and target variable
feature_CO2 = CO2Data.columns[1:2] # CO2 column
X = CO2Data[feature_CO2] # Features = CO2
y = CO2Data.value # Target variable = label
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=0) # split data into training and testing
classifier = tree.DecisionTreeClassifier(random_state=0,
criterion="entropy", max_depth=7) # create decision tree classifier
actual_CO2 = y_test
classifier = classifier.fit(x_train, y_train) # fit the tree
estimated_CO2 = classifier.predict(x_test) # predict the CO2

from sklearn import metrics
accuracy = metrics.accuracy_score(y_test, estimated_CO2) # calculate the
accuracy
print(f"The accuracy of the model is {accuracy}") # print the accuracy

from sklearn.metrics import mean_absolute_error
error_abs = mean_absolute_error(y_test, estimated_CO2) # calculate the
main absolute error
print(f"The main absolute error of the model is {error_abs}") # print
the main absolute error

from sklearn.metrics import f1_score
f1_score = f1_score(y_test, estimated_CO2, average='weighted') #
calculate the f-score
print(f"The f-score of the model is {f1_score}") # print the f-score

from sklearn.metrics import recall_score
recall_score = recall_score(y_test, estimated_CO2, average='weighted')
calculate the recall score
print(f"The recall score of the model is {recall_score}") # print the
recall score

delete the first columne of the actual CO2

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 15

actual_CO2 = actual_CO2.reset_index(drop=True)

plot the actual CO2 and the estimated CO2
plt.plot(actual_CO2, label = "Actual CO2")
plt.plot(estimated_CO2, label = "Estimated CO2")
plt.legend()
#plt.xlabel('Time')
plt.ylabel('ppm CO2')
plt.title('Actual CO2 VS Estimated CO2')
plt.show()

[(i, j) for i,j in zip(y_test.to_list(), estimated_CO2)] # print the
actual CO2 and the estimated CO2

We can use a Random Forest Classifier to es^mate the CO2 too.

import pandas as pd # import pandas library
CO2Data = pd.read_csv("CO2/datadoubleremoved.csv", sep=",") # read csv
file

time = CO2Data["time"] # get time column
CO2 = CO2Data["value"] # get CO2 column

Using scikit-learning library to train our model
from sklearn.model_selection import train_test_split # import
train_test_split library
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier

split dataset in features and target variable
feature_CO2 = CO2Data.columns[1:2] # CO2 column
X = CO2Data[feature_CO2] # Features = CO2
y = CO2Data.value # Target variable = label
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=0) # split data into training and testing
classifier = RandomForestClassifier(criterion="entropy")
actual_CO2 = y_test
classifier = classifier.fit(x_train, y_train) # fit the tree
estimated_CO2 = classifier.predict(x_test) # predict the CO2

from sklearn import metrics
accuracy = metrics.accuracy_score(y_test, estimated_CO2) # calculate the
accuracy
print(f"The accuracy of the model is {accuracy}") # print the accuracy

from sklearn.metrics import mean_absolute_error
error_abs = mean_absolute_error(y_test, estimated_CO2) # calculate the
main absolute error
print(f"The main absolute error of the model is {error_abs}") # print
the main absolute error

from sklearn.metrics import f1_score
f1 = f1_score(y_test, estimated_CO2, average='weighted') # calculate the
f-score
print(f"The f-score of the model is {f1}") # print the f-score

from sklearn.metrics import recall_score
recall_score = recall_score(y_test, estimated_CO2, average='weighted')
calculate the recall score
print(f"The recall score of the model is {recall_score}") # print the
recall score

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 16

delete the first columne of the actual CO2
actual_CO2 = actual_CO2.reset_index(drop=True)

plot the actual CO2 and the estimated CO2
plt.plot(actual_CO2, label = "Actual CO2")
plt.plot(estimated_CO2, label = "Estimated CO2")
plt.legend()
plt.xlabel('Time')
plt.ylabel('ppm CO2')
plt.title('Actual CO2 VS Estimated CO2')
plt.show()

[(i, j) for i,j in zip(y_test.to_list(), estimated_CO2)] # print the
actual CO2 and the estimated CO2

PREDICT SOUND

Sound is a discrete variable, so we can use a Decision Tree to es^mate it.

import pandas as pd # import pandas library
SoundData = pd.read_csv("Sound/datadoubleremoved.csv", sep=",") # read
csv file

timeSound = SoundData["time"] # get time column
Sound = SoundData["value"] # get Sound column

Using scikit-learning library to train our model
from sklearn.model_selection import train_test_split # import
train_test_split library
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree
Classifier

split dataset in features and target variable
feature_Sound = SoundData.columns[1:2] # sound column
X = SoundData[feature_Sound] # Features = sound
y = SoundData.value # Target variable = label
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=0) # split data into training and testing
classifier = tree.DecisionTreeClassifier(random_state=0,
criterion="entropy", max_depth=7) # create decision tree classifier
actual_Sound = y_test
classifier = classifier.fit(x_train, y_train) # fit the tree
estimated_Sound = classifier.predict(x_test) # predict the sound

from sklearn import metrics
accuracy = metrics.accuracy_score(y_test, estimated_Sound) # calculate
the accuracy
print(f"The accuracy of the model is {accuracy}") # print the accuracy

from sklearn.metrics import mean_absolute_error
error_abs = mean_absolute_error(y_test, estimated_Sound) # calculate the
main absolute error
print(f"The main absolute error of the model is {error_abs}") # print
the main absolute error

from sklearn.metrics import f1_score
f1_score = f1_score(y_test, estimated_Sound, average='weighted') #
calculate the f-score
print(f"The f-score of the model is {f1_score}") # print the f-score

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 17

from sklearn.metrics import recall_score
recall_score = recall_score(y_test, estimated_Sound,
average='weighted') # calculate the recall score
print(f"The recall score of the model is {recall_score}") # print the
recall score

delete the first columne of the actual sound
actual_Sound = actual_Sound.reset_index(drop=True)

plot the actual sound and the estimated sound
plt.plot(actual_Sound, label = "Actual Sound")
plt.plot(estimated_Sound, label = "Estimated Sound")
plt.legend()
plt.ylabel('dB')
plt.title('Actual VS Estimated Sound')
plt.show()

[(i, j) for i,j in zip(y_test.to_list(), estimated_Sound)] # print the
actual sound and the estimated sound

PREDICT ELECTRICITY CONSUMPTION

Electricity consump^on is a con^nuous variable. It is not possible to use DT in this case. We are
going to use support vector machine method (SVM) to predict electricity consump^on.

import pandas as pd # import pandas library
ElecData = pd.read_csv("Electricity/datadoubleremoved.csv", sep=",") #
read csv file

time = ElecData["time"] # get time column
Elec = ElecData["value"] # get electricity column

#split dataset in features and target variable
feature_Elec = ElecData.columns[1:2] # electricity column
X = ElecData[feature_Elec] # Features = electricity
y = ElecData.value # Target variable = label
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=0) # split data into training and testing

use svm regression to predict the electricity consumption
from sklearn.svm import SVR
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) # set the kernel to rbf
and fit the model
estimated_Elec = svr_rbf.fit(x_train, y_train).predict(x_test) # predict
the electricity consumption

from sklearn.metrics import mean_absolute_error
error_abs = mean_absolute_error(y_test, estimated_Elec) # calculate the
main absolute error
print(f"The main absolute error of the model is {error_abs}") # print
the main absolute error

plt.plot(x_test["value"].to_list(), label = 'Actual', color='blue')
plt.plot(estimated_Elec, label = 'Estimated', color='red')
plt.ylabel('kW')
plt.legend(loc='upper right')
plt.title('Actual VS Estimated Electricity Consumption')
plt.show()

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 18

[(i, j) for i,j in zip(y_test.to_list(), estimated_Elec)] # print the
actual electricity consumption and the estimated one

PREDICT INDOOR TEMPERATURE

Temperature is a con^nuous variable. It is not possible to use DT in this case. We are going to
use support vector machine method (SVM) to predict the indoor temperature.

import pandas as pd # import pandas library
TempData = pd.read_csv("Temperature/datadoubleremoved.csv", sep=",") #
read csv file

time = TempData["time"] # get time column
Temp = TempData["value"] # get temperature column

#split dataset in features and target variable
feature_Temp = TempData.columns[1:2] # electricity column
X = TempData[feature_Temp] # Features = electricity
y = TempData.value # Target variable = label
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=0) # split data into training and testing

use svm regression to predict the temperature
from sklearn.svm import SVR
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) # set the kernel to rbf
and fit the model
estimated_Temp = svr_rbf.fit(x_train, y_train).predict(x_test) # predict
the temperature

from sklearn.metrics import mean_absolute_error
error_abs = mean_absolute_error(y_test, estimated_Temp) # calculate the
main absolute error
print(f"The main absolute error of the model is {error_abs}") # print
the main absolute error

plt.plot(x_test["value"].to_list(), label = 'Actual Temperature',
color='blue')
plt.plot(estimated_Temp, label = 'Estimated', color='red')
plt.ylabel('°C')
plt.legend()
plt.title('Actual VS Estimated Indoor Temperature')
plt.show()

[(i, j) for i,j in zip(y_test.to_list(), estimated_Temp)] # print the
actual temperature and the estimated one

PREDICT HUMIDITY

Humidity is a con^nuous variable. It is not possible to use DT in this case. We are going to use
support vector machine method (SVM) to predict the humidity.

import pandas as pd # import pandas library
HumData = pd.read_csv("Humidity/datadoubleremoved.csv", sep=",") # read
csv file

time = HumData["time"] # get time column
Hum = HumData["value"] # get humidity column

Smart House HERNÁNDEZ Javier, VICENTE Alfonso

 19

#split dataset in features and target variable
feature_Hum = HumData.columns[1:2] # humidity column
X = HumData[feature_Hum] # Features = humidity
y = HumData.value # Target variable = label
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=0) # split data into training and testing

use svm regression to predict the temperature
from sklearn.svm import SVR
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) # set the kernel to rbf
and fit the model
estimated_Hum = svr_rbf.fit(x_train, y_train).predict(x_test) # predict
the temperature

from sklearn.metrics import mean_absolute_error
error_abs = mean_absolute_error(y_test, estimated_Hum) # calculate the
main absolute error
print(f"The main absolute error of the model is {error_abs}") # print
the main absolute error

plt.plot(x_test["value"].to_list(), label = 'Actual Humidity',
color='blue')
plt.plot(estimated_Hum, label = 'Estimated', color='red')
plt.ylabel('%')
plt.legend(loc='lower right')
plt.title('Actual VS Estimated Humidity')
plt.show()

[(i, j) for i,j in zip(y_test.to_list(), estimated_Hum)] # print the
actual humidity and the estimated one

