
Smart System

Projet Smart Home:

SEM-3A

Presenté par:
Fournier Camille

Kaddour Jana

07/02/2023



Tables des matières
Abstract 3

1. Introduction 4

2. Machine learning algorithm presentation 5

3. Data recovery 6

4. Data processing 7
4.1.  First observations and pre-processing 7
4.2. Visualization 7

5. Algorithms implementation 9
5.1. LSTM implementation 9
5.2. CNN- LSTM implementation 11

6. Results 11

7. Discussion 12

8. Conclusion 12

9. Appendix 13

Bibliography 21

1



Tables des figures
Figure 1 3

Figure 2 5

Figure 3 6

Figure 4 6

Figure 5 7

Figure 6 7

Figure 7 8

Figure 8 9

Figure 9 9

Tables des tables
Table 1 10

2



Abstract

The goal of this project is to make the most of solar energy by scheduling the operation of electrical
appliances during times of maximum solar production. This is achieved through the use of a combination of
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The LSTM
model can be used to model the temporal dependencies between the solar energy production and the
scheduling of the electrical appliances, especially the one who consumes energy the most. In this paper, it has
been proposed that a hybrid deep learning model can enhance previous models and use a combined
CNN-LSTM network to achieve more accurate short-term load forecasting. The performance of the
proposed model is evaluated on real-world data sets and compared with existing models. The results indicate
that the proposed method outperforms existing models, making it a valuable tool for short-time load
prediction applications. The efficiency of the approach can be measured through detailed energy loss
calculations before and after implementation, over a period of one year.

3



1. Introduction

The Expe-smart house project was initiated in 2018 to provide real-time data from a 5-person household
occupying a 120 m² space. Through a Grafana portal with an Influxdb database, 340 measuring points are
accessible to scientists. This smart home is constructed with Open Source Hardware and Software, making
it adaptable to new technologies and sensors. The data collected includes consumption of electricity, gas,
and water for each device, temperature, humidity, and brightness of each room, door, and window
positions, motion sensor readings, light state, air analysis for each room, and outdoor weather conditions
(see Figure 1).

Figure 1: Expe-smarthouse project

The objective of this project is to make the most of solar energy by scheduling the operation of electrical
appliances during times of maximum solar production. By doing so, the aim is to minimize the energy losses
that occur during the charging and discharge of batteries. To measure the success of this strategy, detailed
calculations will be carried out before and after implementation over a certain period of one year. These
calculations will allow a comparison of the energy losses that occurred before and after this scheduling
strategy. The results of these calculations will provide valuable insights into the efficiency of the approach
and will inform any necessary improvements that need to be made in the future.

To implement the scheduling, predicting the PV production is necessary to know when solar energy can be
used directly. To implement this objective, the first needed step is to extract the data that can highly affect the
prediction’s results. The data is related to a sensor that measures it. The following sensor data were chosen to
be investigated:

● Outdoor Temperature
● Irradiation (pyranometer data)
● Solar Panels Production

The data is extracted through a specified period of the year, starting from 27/05/2022 until 24/09/2022,
which is 4 months of training data. After this step, to create the prediction, two algorithms that can be used
for time series prediction will be implemented: LTSM and CNN-LSTM.

4



2. Machine learning algorithm presentation
State of Art:

The paper "A Hybrid Deep Learning Model for Short-Term Load Forecasting" by Behnam , Manar et al.
(2021) presents a state-of-the-art approach for short-term load forecasting by combining Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. The proposed hybrid deep
learning model, called PLCNet, is evaluated on two real-world data sets: "hourly load consumption of
Malaysia" and "daily power electric consumption of Germany". This article highlights the potential of
combining CNN and LSTM networks for accurate predictions in the context of smart grids, where accurate
load forecasting is crucial for minimizing the gap between electricity supply and demand.
The article also highlights the importance of considering time-series attributes, such as trend, seasonality,
and noise, when making load forecasting predictions. In summary, the study provides evidence that the
combination of CNN and LSTM networks is a promising approach for short-term load forecasting and has
the potential to make a significant contribution to the field of energy forecasting. (see bibliography 1)

The paper "An Enhanced Hybrid Model Based on Convolutional Neural Network and Long Short-Term
Memory for Short-Term Load Forecasting" by Musaed et al. (2020) presents the state of the art of
combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for short-term
load forecasting. In recent years, there has been a growing interest in this combination due to its superior
performance in terms of accuracy and efficiency compared to individual models.
The authors propose a hybrid model that enhances previous models and uses a combination of CNN and
LSTM to achieve more accurate short-term load forecasting. The performance of the proposed model is
evaluated on real-world data sets and compared with existing models. The results indicate that the proposed
model outperforms existing models, making it a valuable tool for short-term load forecasting applications
(see bibliography 2).

The objective of this project can be achieved through the use of a combination of Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTMs) models. The CNN model can be utilized to
analyze and process the data of solar production to predict the future production. An LTSM can be used
then to model the temporal dependencies between the solar production and the scheduling of the energy
appliances, especially the one who consumes energy the most. LTSM can be trained on the predicted solar
energy production and the data of electrical appliances usage to schedule the appliances in a manner that
minimizes energy losses. This combination of models allows for a more accurate and efficient solution,
taking advantage of the strengths of both CNNs and LSTMs. The success of the approach can be measured
through detailed energy loss calculations before and after implementation, over a period of one year.

5



3. Data recovery

In the Smart Home, as mentioned before, there are sensors installed to measure a wide range of variables. We
have selected the following: Outdoor Temperature, Irradiation (pyranometer data) and Solar Panels
Production. The data is measured with a frequency of seconds which means that the size of the data is
important making the analysis harder. For that reason, data resampling will be applied (explained more
thoroughly in part 4) to assure different purposes such as:

● Smooth out the noise or fluctuations in the data and make patterns or trends more visible.
● Built models with aggregated data rather than raw data, better for machine learning approaches.
● Less amount of data, easier to be analyzed and visualized.

After that, it was identified that there were periods where no values had been measured. For example, there
was a period from 25/09/2022 until 03/10/2022 where no measures were registered. One solution could be
to try replacing the value of the missing days 25/09 with ones of some  weeks before.

Figure 2: PV production (W)

However, this method might not be very accurate since the values can be changed with a large
proportion in respect to the previous week’s values. Instead, it was decided to separate the data
into 2 divisions : Winter and Summer and only exploit the “summer’ values for our prediction. In
fact, since in Winter the solar panels will produce the minimal amount to feed the home, it was
better to select the Summer part only and study the models on it because in that time of the season
the sun will give the highest and maximum production to feed the home. So, removing the data
from the winter months was applied since there were missing values problems and these months can
degrade the performance of the model. Here, it was the idea to build a model with high
performance with a high production where all data are presented. The selected period was from
27/05/2022 until 24/09/2022.

6



4. Data processing

4.1.  First observations and pre-processing

Once the data is recovered in different csv files, it is now possible to make observations about its quality. To
do so and for ease of exploitation later on in the project, the panda library will be used.

Concerning the quality of the measurements, what can be observed from a quick overview of the csv file is
that there are a lot of duplicates, with often two data given at the same time (see Figure 3). To be able to
exploit the data later on in the predictive algorithms, these duplicates need to be taken out. This is easily
done using the panda function drop_duplicate (see Appendix 1).

Figure 3: Duplicates in the measurement, here for pyranometer data

After, the time range selected for this application is extracted and a resampling process is applied to get the
frequency of measurement from 1s to 1 hour. After the resampling, it can be observed that missing values
have appeared in the dataframe, they are replaced with the previous existing  values in the dataframe using
interpolation with the “ffil” method (see Appendix 2).

4.2. Visualization

Data are displayed in graphs to identify possible outliers in the measurement (abnormal measures made by
the sensor). Below, the time series of the PV production, irradiance and external temperature can be
observed:

Figure 4: PV production (W) data
to be used in the predictive
algorithms

7



Figure 5: Pyranometer (W/m²) data to be used in the predictive algorithms

Figure 6: Temperature (°C) data to be used in the predictive algorithms

From the data visualization, no outliers can be identified. Thus, no further adjustments are made to the
data. It can now be exploited in predictive algorithms.

8



5. Algorithms implementation

5.1. LSTM implementation

To implement the LSTM model, the data is first normalized (see Appendix 3) to make sure it will be in an
appropriate range for the model.

Then, we need to window the data to create the features and labels for the model. To do so, we use the
function split_sequence presented in Figure 7 below. The function takes as inputs the normalized data
(=sequence) and how many data points we will be using for the next prediction(=nsteps). It returns the array
X, the features splitted into sequences of the specified number of steps, and the array y, the label we want to
predict.

Figure 7:  Creation of the features and labels for the model

The training and testing datasets are created using approximately 80% (num_div in the code)  of the data for
the training and 20% for the testing (see Figure8).

9



Figure 8: Definition of the training and testing sets

Finally, we define the LSTM model architecture:
● By setting the number of hidden units in each LSTM layer, here 1.
● By setting the input shape that contains the numbers of time steps and the number of features  used

for the input data.
● By choosing the dropout rate (0.2) for our model. It is the fractions of neurons that are randomly

dropped during the training phase to prevent the model from overfitting.
● By choosing the optimization algorithm that will be used to train the model, here ‘adam’.
● By selecting the loss function( here mean squared error) that will be used to evaluate the LSTM

model’s performance during training .
● By setting the evaluation metrics to be used for evaluating the model’s performance for training and

testing, here ‘accuracy’.

Figure 9: Hyperparameters settings

The optimizer, loss and metrics chosen and dropout rate are standard for a LSTM algorithm. The number
of hidden layers used can start from 1. We tested 1 and 2 hidden layers to see which was giving the best
results. After computing the R2 score, it was found that 1 hidden layer had a R2 score of 0.926 while two
layers gave 0.911. Thus, only one hidden layer was selected.

It can be noted that for this project only experimentation was used to fine tune the hidden layers of the
LSTM model. However, it is possible to find an optimization of all the hyperparameters to be used by
implementing a grid search algorithm as described in ( Fuentes, 2018). This method was not implemented
for our project because of the long computation time of the model.

Finally, we finished implementing the model by training it and making a prediction to compare with our
y_test dataset (see Appendix 6) .

10



5.2. CNN- LSTM implementation

The CNN-LSTM being a hybrid version of LSTM, its implementation is made in the same manner of the
LSTM:

● Sequencing the data into features and labels of the desired number of steps
● Dividing the data into train and test subset
● Defining the model architecture (here again we choose to use standard value and not to pursue a

finer tuning of the hyperparameters).

6. Results

Using the LSTM model and CNN-LSTM model, predictions were made for a time horizon of 1, 12 and 24
hours. As a reminder, our objective for this project would be to have the best prediction possible for the
next 24 hours of the PV production to advise the homeowner on when to schedule the running of high
consumption appliances such as the dishwasher, washing machine or  dryer.

As a first step it was decided to run the LSTM and CNN-LSTM algorithms for a prediction of 1 hour to
investigate which was the most performing algorithm. According to the result Table 1 below. CNN-LSTM
proved to have better performances than LSTM. It was thus decided to investigate if adding other features to
it could improve its prediction performances. The impact of adding data of irradiance, temperature and
both were tested however none improved the quality of the model.

Average R2 score Time predicted

Model 1H 12H 24H

LSTM 0.765 - -

CNN LSTM with only PV prod 0.908 0.81879 0.826882

CNN LSTM PVprod+irradiance future 0.899 0.72284 0.80858

CNN LSTM PVprod+temp future 0.90202 0.75743 0.697771

CNN LSTM temp +irrad future 0.8862624 0.74514 0.75278

Table 1: Average R2 score measured for the different predictions

11



7. Discussion

Our prediction performance for the 24h prediction has a best R2 score of 0.82 by using the CNN LSTM
algorithm with only the PV production data. The results are good but maybe other pathways could be
explored to find improvements. For example, looking at the best way to make the prediction here we use the
24h last hour of data to make our prediction, maybe using more or less data would be more effective. We
could also look into fine tuning our hyperparameters. It was not done in this work due to time constraints
but it could be another improvement pathway.

Should we reach a higher accuracy, we can hope to make good energy savings by directly using the PV
produced energy because using the battery means that each time we use the inverter only 95% ( ref Victron
3kW) of the energy is converted. Thus, if we look only at the consumption of the dishwasher (one of the
heavy load appliances that can be programmed at a certain time to run) which is approximately 1 kW. The
dishwasher runs for 2 hours approximately every two days. For the summer months, the production can
peak 1,6kW which is more than enough to cover the load of the dishwasher. Thus, scheduling the running
of the dishwasher could save:

● For a day (2 hour of running): Energy lost to have 1kWh from the battery :(1000/0,95*0,95
-1000)*2= 216 Wh

● For 15 days: Energy lost: 3,2 kWh
● For 6 summer months (April-Septembre):  Energy lost: 19,4 kWh

8. Conclusion

During this project, we looked at ways to implement a prediction of the PV production for the next day. For
that, we first had to retrieve and process the data we were interested in. After,, we researched LSTM and
CNN LSTM algorithms to make our prediction. After testing both algorithms, it appeared that CNN
LSTM was most promising. We looked at adding other features to enhance the CNN LSTM model’s
prediction but none of the features we tried were able to increase the model. The best prediction was thus
with CNN LSTM algorithm using only the historical PV production data with a R2 score of 0,82.

12



9. Appendix

Appendix 1: drop_duplicate function to remove duplicates in the csv files

Appendix 2: example of resampling of the pyranometer data to a frequency of 10mn and use of
interpolation

Appendix 3: Implementation of the LSTM model normalization

#Normalizing the data to be used in the LSTM model

data_to_use=df.PVprod.values

from sklearn.preprocessing import StandardScaler

scaler=StandardScaler()

scaled_data=scaler.fit_transform(data_to_use.reshape(-1,1))

Appendix 4: Windowing of the data to create the features and label of the data set

# creating the input and features for the model by sequencing the data

from numpy import array

def split_sequence(sequence, n_steps):

X, y = list(), list()

for i in range(len(sequence)):

13



# find the end of this pattern

end_ix = i + n_steps

# check if we are beyond the sequence

if end_ix > len(sequence)-1:

break

# gather input and output parts of the pattern

seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]

X.append(seq_x)

y.append(seq_y)

return array(X), array(y)

# define input sequence

n_steps = 24

# split into samples

X, y = split_sequence(scaled_data, n_steps)

# summarize the data

#for i in range(len(X)):

#print(X[i], y[i]) #--> if you want to visualize remove #

n_features = 1

X = X.reshape((X.shape[0], X.shape[1], n_features))

#for i in range(len(X))

Appendix 5: Training and test set

num_div = 14000

X_train=X[0:num_div]

y_train=y[0:num_div]

X_test=X[num_div:]

y_test=y[num_div:]

y_train=y_train.reshape(y_train.shape[0])

y_test=y_test.reshape(y_test.shape[0])

print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)

Appendix 6: Training and prediction of the LSTM model

%%time

network = model.fit(X_train,y_train, epochs=20, validation_data=(X_test,

y_test), shuffle=False,verbose=1)

14



# plot train and validation loss

plt.plot(network.history['loss'])

plt.plot(network.history['val_loss'])

plt.title('model train vs validation loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'validation'], loc='upper right')

plt.show()

yhat = model.predict(X_test, verbose=0) #verbose is to see the epochs or

not (0,1,2)

Appendix 7: Variation of the R2 score between y_test and the prediction of 1H for the LSTM
algorithm

Appendix 8: Variation of the R2 score between y_test and the prediction of 1H for the
CNN-LSTM algorithm

15



Appendix 9: Variation of the R2 score between y_test and the prediction of 12H for the
CNN-LSTM algorithm

16



Appendix 10: Variation of the R2 score between y_test and the prediction of 24H for the
CNN-LSTM algorithm

Appendix 11: Variation of the R2 score between y_test and the prediction of 1H for the
CNN-LSTM algorithm adding the irradiance feature

Appendix 12: Variation of the R2 score between y_test and the prediction of 12H for the
CNN-LSTM algorithm adding the irradiance feature

17



Appendix 13: Variation of the R2 score between y_test and the prediction of 24H for the
CNN-LSTM algorithm adding the irradiance feature

Appendix 14: Variation of the R2 score between y_test and the prediction of 1H for the
CNN-LSTM algorithm adding the temperature feature

18



Appendix 15: Variation of the R2 score between y_test and the prediction of 12H for the
CNN-LSTM algorithm adding the temperature feature

Appendix 16: Variation of the R2 score between y_test and the prediction of 24H for the
CNN-LSTM algorithm adding the temperature feature

19



-Appendix 17: Variation of the R2 score between y_test and the prediction of 24H for the
CNN-LSTM algorithm adding the temperature and irradiance feature

20



Bibliography

1- Behnam,Manar et al. (2021). A Hybrid Deep Learning Model for Short-Term Load Forecasting.[IEEE
Transactions on Smart Grid, 10(1), 1-10]. https://ieeexplore.ieee.org/abstract/document/9356582

2- Musaed et al. (2020).An enhanced hybrid model based on convolutional neural network and long
short-term memory for short-term load forecasting.[IEEE Xplore].
https://ieeexplore.ieee.org/document/9210478

3-Fuentes, A. (2018). Hands-On Predictive Analytics with Python: Master the complete predictive analytics
process, from problem definition to model deployment. Packt Publishing Ltd.

21

https://ieeexplore.ieee.org/abstract/document/9356582
https://ieeexplore.ieee.org/document/9210478

