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Abstract. — The forecasting of residential electricity demand has become
a critical aspect in the development of sustainable energy systems. Accurate
prediction of electricity consumption patterns is essential in order to maintain
a stable energy supply and prevent overloading the grid. The present study
aimed to explore the effectiveness of the Stride TCN model in forecasting elec-
tricity demand using data obtained from a Raspberry Pi. The collected data
underwent a rigorous preprocessing stage, which involved transforming the raw
time series data into a format suitable for training the model. Through the
use of the Stride TCN model, the study was able to demonstrate the poten-
tial of deep learning models in predicting residential electricity demand with
high accuracy. This research sheds light on the importance of incorporating
cutting-edge machine learning techniques in energy forecasting and highlights
the significance of precise demand forecasting in the development of a sustain-
able energy future.
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1. Introduction

T he need for accurate forecasting of energy demand in residential buildings
has become increasingly important in recent years, particularly with the

growing emphasis on energy efficiency and the integration of smart building
technologies [ IEA23 ]. In particular, the accurate prediction of electric energy
demand in residential buildings has become a crucial aspect of managing
energy consumption and reducing costs. The French residential sector has been
identified as a key area of focus, as the country seeks to meet its ambitious
energy efficiency and carbon reduction goals. In light of this, the application of
machine learning models for forecasting energy demand in residential buildings
in France has been the subject of a growing body of research. Despite the
promising results that have been achieved thus far, there remains a need for
further analysis and development in this field [ SNG19 ].

This article aims to provide an in-depth examination of the current state of
the art in the use of machine learning models for forecasting energy demand in
residential buildings, with a particular focus on the prediction of electric energy
demand. By highlighting the challenges and opportunities presented by this
area of research, it is hoped that this article will inform future developments
in the field and contribute to the advancement of smart building technologies.

2. State of the Art

T o date, the majority of research on deep learning (DL) models for fore-
casting energy loads in residential buildings has focused solely on electric

loads. This limited scope may be attributed to the additional time and re-
sources required for data acquisition of non-electrical loads such as thermal,
lighting, and natural gas. Additionally, forecasting energy loads at a granular
level can be challenging due to the inherent uncertainty and volatility of these
loads [ BBO18 ].

A variety of DL-based models have been applied at the residential level,
including convolutional neural networks (CNNs), long short-term memory
(LSTM) networks, and comparison-based models as highlighted in recent pub-
lications. Of these, LSTM-based models have achieved the most widespread
implementation and have demonstrated promising results. For example, Ama-
rasignhe et al. [ AMM17 ] compared DL techniques such as CNNs, LSTMs,
and factorized restricted Boltzmann machines (FRBMs) to traditional ma-
chine learning (ML) techniques such as artificial neural networks (ANNs) and
support vector machines (SVMs) for forecasting electric demand in a building.
The forecast horizon was 60 hours ahead and the study utilized four years
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of training data. The results of this study showed that DL-based forecast-
ing models obtained lower forecasting errors compared to standard ML-based
techniques, with LSTMs achieving the smallest error.

Similarly, Hossen et al. [ Hos+19 ] conducted a preliminary analysis compar-
ing simple recurrent neural networks (RNNs), gated recurrent units (GRUs),
and LSTMs to other data-driven approaches such as autoregressive integrated
moving average (ARIMA), generalized linear models (GLMs), random forests
(RFs), SVMs, and feedforward neural networks (FFNNs). The results of this
study indicated that all RNN-based models achieved superior forecasting per-
formance compared to other data-driven models.

CNNs have also shown promising results in their applications to residential
energy forecasting models. For instance, Estebsari et al. [ EE220 ] compared
CNN-based models to ANNs and SVMs for a residential house. The results of
this study showed that CNN-based models achieved higher accuracy than SVM
and ANN models. However, despite these promising results, the application of
DL-based techniques for residential energy load forecasting remains an area
with a relatively small sample size of applications and further research is
required to fully understand its potential [ RZ21 ].

In recent times, a specialized architecture known as temporal convolutional
networks (TCN) has gained popularity as a suitable method for handling time
series data. The concept of TCN was first introduced in [ BKK18 ], where
it was compared to several recurrent neural networks (RNNs) for sequence
modeling tasks. TCNs utilize causal dilated convolution to enable the cap-
turing of longer-term dependencies while preventing information loss. Ad-
ditionally, they possess several benefits over RNNs such as reduced memory
requirements, parallel processing of long sequences, and a more stable training
procedure. Several studies have successfully employed TCNs for time series
forecasting tasks, including an architecture using stacked dilated convolutions
proposed in [ BBO18 ] to enhance the performance of long short-term memory
networks for financial domain problems, an encoder-decoder deep TCN pro-
posed in [ Che+20 ] for multiple related time series in the sales domain, and a
multivariate time series forecasting model for meteorological data proposed in
[ Wan+19 ] which outperformed several popular deep learning models. However,
to the best of our knowledge, the potential of TCNs for univariate time series
forecasting problems related to electricity demand data has yet to be explored
[ Lar+20 ].

Temporal Convolutional Networks (TCNs) are a class of deep learning mod-
els specifically designed for time series forecasting. They are built on the
architecture of Convolutional Neural Networks (CNNs) and are well-suited for
applications involving sequential data such as energy demand forecasting.
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The key advantage of TCNs is their ability to effectively capture long-
term dependencies in time series data. Traditional Recurrent Neural Networks
(RNNs) such as Long Short-Term Memory (LSTM) networks have difficulty in
capturing dependencies beyond a certain horizon due to the vanishing gradient
problem. TCNs, on the other hand, use dilated convolutions to increase the
receptive field of the network without increasing the number of parameters.
This allows TCNs to capture temporal patterns at multiple scales, effectively
addressing the problem of long-term dependencies in time series data.

In TCNs, the input data is passed through a series of convolutional layers,
each followed by a non-linear activation function. The convolutional layers use
dilated filters, which means that the filters are spaced apart by a certain factor.
This allows the network to increase its receptive field without increasing the
number of parameters. The output of the last convolutional layer is passed
through a fully connected layer, which produces the final forecast.

Thus making TCNs a powerful class of deep learning models that are well-
suited for time series forecasting applications such as energy demand forecast-
ing. Their ability to effectively capture long-term dependencies in sequential
data makes them a strong candidate for addressing the challenges of forecast-
ing in the energy sector. With the increasing availability of high-resolution
energy data, TCNs have the potential to significantly improve the accuracy
and reliability of energy forecasting.

3. Methodology

A nalysis only make sense if we are having a right data and we understand
it. Therefore, before doing analysis, we clean and explore the raw data.

We dropped the repeated data and sampled the data by 1 hour. After obtaining
a reasonable stationary profile for the label and features, the data are combined
into one dataset and only the hours with complete data are extracted.

With the clean data, we explored the data and investigate the importance
of each feature to the label, which in our case is the electricity consumption.

3.1. Data Collection
The data is collected from the Expe-smarthouse project which is an initiative

aimed at providing researchers with access to real-time data from a 120 square
meter household [ Jer ]. This smart home is equipped with approximately
340 measuring points, which are made available through a Grafana portal
that utilizes an Influxdb database. The data collected includes measures of
electricity, gas, and water consumption, temperature, humidity, and brightness
levels, as well as information on door and window openings, motion sensor
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readings, lighting states, and air quality in each room. Additionally, data on
outdoor weather conditions is also collected.

The process of collecting sensor data using Raspberry Pi and storing it in
a database is commonly referred to as data logging. One popular method
for data logging is to use a Raspberry Pi in conjunction with a sensor such
as a power meter to measure electricity consumption and weather sensors to
measure temperature and humidity. The data is then collected and stored in
a database, such as InfluxDB, which allows for easy retrieval and analysis.

To collect data, a Raspberry Pi can be configured with the necessary software
and libraries to communicate with the sensors. The sensor data is then read
by the Raspberry Pi at regular intervals and sent to the InfluxDB database
via a protocol such as the InfluxDB Line Protocol. The data is then stored in
a structured format, allowing for easy querying and analysis. In addition, the
data can be visualized using a tool such as Grafana for further analysis.

3.2. Data Analysis
The data obtained as CSV files are read as data frames and their quality

is checked in terms of resolution and time period covered. The data are
then resampled into hourly resolution and concatenated together. In order
to understand the dependency between the electricity meter data and various
weather data the following correlation matrix is plotted as shown in the Figure

 1 in Page  6 . As it is evident there is no strong correlation between the
electricity consumption and weather as the buildings heating system is not
electric. Thus the weather data is dropped from focus for the moment.

Exploratory data analysis (EDA) is a crucial step in the process of time series
forecasting. This step involves examining the characteristics and patterns of
the data in order to gain insights and identify any potential issues or outliers.

One common technique used in EDA of time series data is visual inspection.
The electric power time series is plotted as shown in the figure. This can be
done by plotting the data over time and observing any trends, seasonality,
or other patterns that may be present as shown in the Figure  2 in Page  6 .
Additionally, summary statistics such as mean, median, and standard deviation
can be calculated to provide a quick overview of the distribution of the data
as shown in the Table  1 in Page  7 .

Another technique used in EDA of time series data is decomposition. This
involves breaking down the time series data into its component parts, such as
trend, seasonal, and residual components. Decomposition can provide further
insights into the underlying patterns in the data and can help identify any
potential issues that may need to be addressed before using machine learning
techniques for forecasting.
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Figure 1. Correlation Heatmap

Figure 2. Time Series Decomposition
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Table 1. Statiscal Analysis of Electricity Consumption Data.

count 8736.000000
mean 412.358355
std 305.836092
min 151.689498
25% 222.337282
50% 294.822410
75% 446.785882
max 3659.466292

Table 2. Augmented Dickey Fuller Test

ADF Statistic -12.38
n_lags 5.02e-23
p-value 5.02e-23
Critical Values 1% -3.43
Critical Values 5% -2.86
Critical Values 10% -2.56

Finally, statistical tests such as the Augmented Dickey-Fuller test can be
used to determine if the time series data is stationary, which is an assumption
of many machine learning models as shown in the Table  2 in Page  7 . If the
data is not stationary, then a transformation such as differencing, or a seasonal
decomposition may be necessary.

Overall, the goal of exploratory data analysis is to gain a deeper understand-
ing of the data before using machine learning techniques to forecast energy
demand, and to identify any potential issues that may need to be addressed in
order to improve the accuracy of the forecasts.

3.3. Stride - TCN Model
Temporal Convolutional Networks (TCNs) have gained popularity as a spe-

cialized architecture for dealing with time series data. The architecture of a
TCN, as shown in the Figure  3 in Page  8 consists of multiple components, in-
cluding input tensor, residual blocks, basic layers, weight normalization, ReLU
activation, dropout, and causal convolutional layers, all of which play an im-
portant role in processing time series data [ Fra20 ] [  Anh+22 ].

The input tensor is fed into the TCN, which represents the time series data.
The input tensor is then processed by a series of residual blocks, which are the
building blocks of the TCN. The basic layer of the residual block takes in the
input tensor, and applies weight normalization followed by a ReLU activation
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Figure 3. TCN Architecture [ Fra20 ]

function. The output of the basic layer is then added to the original input
tensor, and this result is referred to as the residual.

The residual is then passed through a dropout layer, which helps in prevent-
ing overfitting by randomly zeroing out some of the activations. The output
of the dropout layer is then processed by the next residual block.

A casual convolutional layer, which is a convolutional layer with a filter that
only processes past information, is applied to the output of the residual block.
This layer extracts relevant features from the time series data, allowing the
TCN to capture long-term dependencies. The final output of the TCN is a
tensor that represents the processed time series data. The output tensor is
then used for the task of time series forecasting.

Stride-TCN is a variant of the Temporal Convolutional Network (TCN)
architecture for processing sequential data. The main difference between the
traditional TCN and Stride-TCN is the usage of strided convolutions in the
latter, which are convolutional layers with a stride greater than 1, effectively
reducing the spatial resolution of the input data. The purpose of this reduction
is to reduce the number of parameters in the model, speed up computation,
and prevent overfitting. Stride-TCN is particularly useful for handling large
sequence lengths, such as long-term time series data, where a traditional TCN
might be computationally infeasible. The performance of Stride-TCN has been
shown to be competitive with traditional TCN models in a range of sequential
data processing tasks, including time series forecasting and activity recognition.
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A Stride-TCN is employed in this project to forecast the electricity demand.
The model is obtained from the Darts library and the main parameters of the
model include,

input chunk length = 7*24 hours
output chunk length = 1 hour

The Mean Absolute Error (MAE) is a commonly used evaluation metric in
time series forecasting to measure the difference between the predicted and
actual values. When evaluating the performance of the Stride-TCN model
for electricity demand forecasting, the MAE can be calculated by taking the
average absolute difference between the predicted and actual demand values
over a specific time period. Mathematically, this can be represented as follows:

MAE = |(yi − yp)|/n

Where,
n = number of observations
yi = actualelectricitydemandvalues
yp = predictedelectricitydemandvalues

The lower the value of MAE, the better the performance of the model. A
lower MAE value indicates that the model has a higher accuracy in predicting
the electricity demand values. In other words, the predictions are closer to the
actual values, making the model more reliable for forecasting purposes.

4. Results & Discussions

T his section discusses the model architecture used and results obtained.

4.1. Hourly Resolution
The parameters in a stride TCN model [ Uni20 ] can be explained as follows:

1. input_chunk_length: This parameter specifies the length of the input
chunk for the TCN model. A value of 7 x 24 means that the input chunk
is of length 7 days and 24 hours, i.e., 168 hours.

2. output_chunk_length: This parameter specifies the length of the output
chunk. A value of 1 means that the output chunk is of length 1 hour.

3. n_epochs: This parameter specifies the number of training epochs for
the model. A value of 50 means that the model will be trained for 50
iterations.

4. dropout: This parameter specifies the dropout rate for the model, which
is used to prevent overfitting. A value of 0.2 means that 20% of the
neurons will be dropped during each iteration of training.
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5. dilation_base: This parameter specifies the base dilation rate for the
causal convolutional layer. A value of 2 means that the dilation rate will
be a power of 2.

6. weight_norm: This parameter specifies whether weight normalization
should be used for the model. A value of True means that weight
normalization will be used.

7. kernel_size: This parameter specifies the size of the kernel used in the
causal convolutional layer. A value of 5 means that a 5 x 5 kernel will
be used.

8. num_filters: This parameter specifies the number of filters used in the
causal convolutional layer. A value of 8 means that 8 filters will be used.

9. nr_epochs_val_period: This parameter specifies the number of epochs
after which the model will be validated. A value of 1 means that the
model will be validated after every 1 epoch.

10. random_state: This parameter specifies the random seed used for repro-
ducibility. A value of 0 means that the model will be initialized with the
same random seed each time it is run.

The historical_forecasts function is used to generate historical forecasts
based on the trained TCN model. The parameters for this function are:

1. series: This parameter specifies the time series data that is to be used
for forecasting.

2. start: This parameter specifies the start point of the time series data to
be used for forecasting. A value of 0.7 means that 70% of the data will
be used for training and the remaining 30% will be used for validation.

3. forecast_horizon: This parameter specifies the number of steps ahead
the model will forecast. A value of 1 means that the model will forecast
1 step ahead.

4. stride: This parameter specifies the step size for the forecast. A value of
1 means that the forecast will be made for every step in the time series.

5. retrain: This parameter specifies whether the model should be retrained
for each forecast. A value of False means that the model will not be
retrained.

In a scenario where the hourly electricity consumption data is being ana-
lyzed, a Stride TCN model is trained with 80% of the available data, with the
remaining 20% of the data being reserved for testing purposes. The model is
trained with the objective of accurately forecasting the electricity demand. To
evaluate the performance of the model, mean absolute error (MAE) is used as
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the evaluation metric. The final results as seen in Figure  4 in Page  11 show
that the Stride TCN model performs with an MAE of 0.0416, which indicates
that, on average, the model’s forecasts deviate from the actual values by 0.0416
units. This demonstrates the efficacy of the Stride TCN model in forecasting
electricity demand, with a low deviation between the predicted values and the
actual values.

Figure 4. Model Prediction Evaluation - Hourly Resolution Input Data

4.2. Daily Resolution
When the same approach of using the stride TCN model is repeated on

electricity consumption data collected at a daily resolution, the results obtained
are not as favorable as in the previous scenario. The model is trained using
80% of the data, with the remaining 20% of the data being used for testing.
The evaluation of the model is done using the Mean Absolute Error (MAE)
metric. The obtained MAE score is 0.1465 as shown in the Figure  5 in Page  12 .
This value indicates that there is a significant difference in the performance of
the model when it is trained on data collected at different temporal resolutions.
It is important to note that the higher the resolution of the data, the more
complex the model’s task becomes, as it needs to take into account a greater
amount of information in order to make accurate predictions. In this scenario,
the model’s performance might not have been optimal due to the presence of
additional information in the daily resolution data, which the model may have
struggled to fully process and incorporate into its predictions.
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Figure 5. Model Prediction Evaluation - Daily Resolution Input Data

5. Conclusions & Reflections

I n conclusion, this machine learning lab project, utilizing the Stride TCN
model on electricity demand data collected from a Raspberry Pi device,

provided a valuable opportunity for learning and application of various con-
cepts and techniques. Through the course of this project, it has become evident
that data collection and preprocessing play crucial roles in determining the suc-
cess of a machine learning model. The process of transforming raw data into
a format suitable for modeling, identifying and handling missing values, and
normalizing the data, among other steps, must be carefully executed in order
to obtain accurate results.

The Stride TCN model was trained on 80% of the hourly electricity con-
sumption data and tested on the remaining 20% of the data, with a mean
absolute error score of 0.0416 obtained. The same procedure was repeated on
a daily resolution data, resulting in a mean absolute error score of 0.1465.

While this project has provided a solid foundation for understanding the
Stride TCN model and its applications, there is room for improvement and
further exploration. For example, the parameters of the model can be further
optimized through hyperparameter tuning, to improve its performance and
accuracy. Additionally, incorporating other relevant variables, such as weather
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data or socioeconomic indicators, into the analysis may also lead to more
accurate results.

Overall, this lab project has been a valuable experience and the learnings
gained will be useful in future endeavors. It has demonstrated the importance
of careful data collection and preprocessing, and the potential of the Stride
TCN model in forecasting electricity demand. The future prospects of this
project are promising, and further exploration and experimentation with the
Stride TCN model and other time series forecasting techniques are encouraged.

6. Code

T he code and the associated data can be found in this  GitHub repository .

https://github.com/anujgs/MLO-Project-2
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