

ICT for Smart Grids

Monitoring Cluster MHI

http://miniprojets.net/index.php/2019/07/23/monitoring-dune-serre-du-capteur-jusquau-serve ur/

Abstract	2
Mise en place du capteur	2
Influx DDB	5
Grafana	5

Abstract

La Data Science est au cœur de la transition énergétique dans tous les secteurs d'activités (Industrie 4.0, tertiaire,...). De la meilleure gestion de la production et consommation au limitations des pertes du moindre système énergétique, ils ont une place majeure dans le domaine de l'énergie. Dans ce bureau d'études, nous allons étudier le fonctionnement d'un capteur et tenter de réaliser un scénario avec ce dernier.

I. Mise en place du capteur

Le capteur que nous avons choisi d'utiliser est un multi-sensor de marque Aeotec. Il permet de capter la température, l'humidité ainsi que la luminosité. Afin de l'implémenter sur Jeedom, nous le connectons directement à l'ordinateur grâce au port USB. Jeedom est un logiciel open source qui permet de gérer sa domotique. Il est compatible avec de nombreux protocoles tels que Z-wave (que nous utilisons), EnOcean, Edisio,...

Jeedom permet de créer des scénarios à l'aide des capteurs qui sont installés dans la maison/pièce. En cette période de crise sanitaire, nous avons pensé à réaliser un scénario qui alerterait lorsque trop de personnes seraient dans une même pièce ou lorsque la concentration de CO2 dans la pièce serait trop élevée.

Nous configurons ensuite ses valeurs et ses paramètres afin qu'il puisse mesurer les données voulues.

🙆 Résumé 🗣 Valeur	rs 🎤 Paran	nètres 🔹 Asso	ociations 🗱	Systèmes	≅ Actions ⊯ S	Statistiques		
Nom	Valeur	Classe	Instance	Index	Туре	Rafraichissement	Forcer la mise à jour	Date de mise à jour
Basic	1255	32 (0x20)	1	0	Byte (int)	🗡 Auto	0	23/12/2020 11:23:39
Sensor	ON	48 (0x30)	1	0	Bool (bool)	Auto	0	30/12/2020 08:11:44
Temperature	19.7 C	49 (0x31)	1	1	Decimal (float)	🗡 Auto	0	30/12/2020 08:12:59
Luminance	40 lux	49 (0x31)	1	3	Decimal (float)			30/12/2020 08:12:57
Relative Humidity	25 %	49 (0x31)	1	5	Decimal (float)			30/12/2020 08:13:00
Alarm Type	0	113 (0x71)	1	0	Byte (int)	🖌 Auto	0	30/12/2020 08:11:45
Alarm Level	0	113 (0x71)	1	1	Byte (int)			30/12/2020 08:11:45
SourceNodeld	0	113 (0x71)	1	2	Byte (int)			30/12/2020 08:11:45
Alarm Notification	1	113 (0x71)	1	3	Byte (int)			
Burglar	7	113 (0x71)	1	10	Byte (int)			30/12/2020 08:11:45
Battery Level	100 %	128 (0x80)	1	0	Byte (int)	🗲 Auto	0	30/12/2020 08:12:56

> Configuration du module

> Configuration du module

D Dáo	umá D Valaura		181 Accordiate		Sustèmes - Astions IM Statistiques			
to nes	ume valeurs	 Parametres 	Associati	ions Me	systemes Z Actions Z Statistiques			
Index	Nom	Туре	Valeur	Modifier	Aide Reprendre de (B Appliquer sut C Actualiser les paramètres			
2	Wake up 10 minut on Power On	es List	No	۶	Stay awake for 10 minutes after batteries are inserted			
3	On time	Short	240	2	How long should the device associated to multi sensor keep state On before sending it Off command (i the value is bigger than 255, the value would be rounded to next integer in minutes)			
4	Enable Motion Sensor	List	Enabled	1	Enable Motion Sensor			
5	Command Option	s List	Basic Set (default)	1	Which commands to send when PIR motion sensor triggered OZW Ideal Value is Binary Sensor Report			
40	Reporting Thresh	old List	Disabled	۶	Enable/disable the selective reporting only when measurements reach a certain threshold or percentage set in the threshold settings. This is used to reduce network traffic.			
41	Temperature Reporting Thresho	Short	256	2	Threshold change in temperature to induce an automatic report. Note: 1. When the unit is Celsius, threshold=Value. 2. When the unit is Fahrenheit, threshold=Value*1.8. The accuracy is 0.1. 3. The high byte is the part of integer, the low byte is the fractional part.			
42	Humidity Reportin Threshold	ig Short	1280	۶	Threshold change in humidity to induce an automatic report. Note: The accuracy is 0.1. The high byte is the part of integer, the low byte is the fractional part.			
43	Luminance Reporting Thresho	Short	100	1	Threshold change in luminance to induce an automatic report.			
44	Battery Reporting Threshold	Short	1280	*	Threshold change in battery level to induce an automatic report. Note: The accuracy is 0.1. The high byte is the part of integer, the low byte is the fractional part.			
46	Low Temp Alarm	List	Disabled	1	Enable/disable to send the alarm report of low temperature(Less than 15 Degress C)			
101	Group 1 Reports	Int	225	P	Which reports need to send automatically in timing intervals for group 1. Bitsets: 0 -> Battery report, 5 - Temperature. 6 -> Humidity. 7 -> Luminosity			

Son fonctionnement est le suivant : dès qu'il détecte un changement assez important du paramètre mesuré, il relève sa nouvelle valeur. On peut observer ci-dessous l'interface graphique qui permet de visualiser en temps réel les valeurs des paramètres mesurés par le capteur (le nôtre est celui nommé "MS Marc Marin 3" en vert) :

	4A013 Présence				
MultiSensor C01	MultiSensor C02				
Présence Température Luminosité Humidité	Présence Température Luminosité Humidité				
MultiSensor C03	MS Marc Marin 3				
Présence Température Luminosité Humidité	Battery Level 0 Temp Lum				
	25				

Sur la courbe ci-dessous, on affiche la luminosité (relative) en fonction du temps. Vers 8:19 par exemple, nous avions placé notre main sur le capteur, faisant ainsi chuter la valeur de la luminosité relevée.

Le schéma général des différentes étapes de l'utilisation du capteur et des données qu'il fournit est le suivant :

II. InfluxDB

InfluxDB est un système de gestion de base de données orienté séries temporelles hautes performances.

Il va notamment permettre de faire la liaison entre les données capteur envoyées à Jeedom et la visualisation sur Grafana que nous verrons ci-après. Pour l'installer il suffit de lancer quelques lignes de code directement dans le Shell de la Rasperry.

Petit tips : les quelques lignes de codes pour l'installation sont trouvables sur beaucoup de forums et sites internet. Mais généralement cela inclut des téléchargements via ces sites dont la raspberry ne peut pas certifier la validité, l'installation est alors annulée (beaucoup de groupes ont été bloqués par cela).

La solution est de préciser en aval de la commande « wget » qu'on ne souhaite pas certifier le site (attention donc à ce qu'on télécharge) :

wget --no-check-certificate https://...

Les étapes suivantes sont de mettre à jour et démarrer le serveur InfluxDB avec les commandes « influxd » suivie de « influx ». Ensuite il s'agit de créer sa base de données « CREATE DATABASE mydb ».

III. Grafana

Grafana est un logiciel de visualisation des données. Grâce à des tableaux de bords et des graphiques, il permet un affichage optimal des données et facilite leur analyse et interprétation. A la fin des 8 heures de projet imparties, nous nous apprêtions à commencer à travailler avec Grafana. Nous avons réussi à l'installer sur l'ordinateur mais nous ne sommes pas allés plus loin. Voici un exemple tiré d'internet de ce à quoi l'interface graphique aurait pu ressembler :

Dans le configuration de Grafana il suffit de renseigner le local host sur lequel votre BDD InfluxDB est stockée pour faire le pont ainsi que le nom de cette dernière.

≢ Settings				
Name 6	InfluxDB-2		Default	
HTTP				
URL	http://localhost:8086	0		
Access	http://localhost:8086	•	Help ▶	
Whitelisted Cookies	Add Name	0		

IV. Conclusion

Bien que le monitoring à proprement parler n'ait pas pu être réalisé dans ces deux séances, nous avons pu établir l'architecture et les liens entre les composants nécessaires à sa réalisation. L'étape suivante serait peut être de définir des scénarios dans Jeedom et de voir leur efficacité sur Grafana.